Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       zhetd2.f -

SYNOPSIS

   Functions/Subroutines
       subroutine zhetd2 (UPLO, N, A, LDA, D, E, TAU, INFO)
           ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary
           similarity transformation (unblocked algorithm).

Function/Subroutine Documentation

   subroutine zhetd2 (characterUPLO, integerN, complex*16, dimension( lda, * )A, integerLDA,
       double precision, dimension( * )D, double precision, dimension( * )E, complex*16,
       dimension( * )TAU, integerINFO)
       ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary
       similarity transformation (unblocked algorithm).

       Purpose:

            ZHETD2 reduces a complex Hermitian matrix A to real symmetric
            tridiagonal form T by a unitary similarity transformation:
            Q**H * A * Q = T.

       Parameters:
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     Hermitian matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     n-by-n upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading n-by-n lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.
                     On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     of A are overwritten by the corresponding elements of the
                     tridiagonal matrix T, and the elements above the first
                     superdiagonal, with the array TAU, represent the unitary
                     matrix Q as a product of elementary reflectors; if UPLO
                     = 'L', the diagonal and first subdiagonal of A are over-
                     written by the corresponding elements of the tridiagonal
                     matrix T, and the elements below the first subdiagonal, with
                     the array TAU, represent the unitary matrix Q as a product
                     of elementary reflectors. See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T:
                     D(i) = A(i,i).

           E

                     E is DOUBLE PRECISION array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

           TAU

                     TAU is COMPLEX*16 array, dimension (N-1)
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           September 2012

       Further Details:

             If UPLO = 'U', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(n-1) . . . H(2) H(1).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
             A(1:i-1,i+1), and tau in TAU(i).

             If UPLO = 'L', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(1) H(2) . . . H(n-1).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
             and tau in TAU(i).

             The contents of A on exit are illustrated by the following examples
             with n = 5:

             if UPLO = 'U':                       if UPLO = 'L':

               (  d   e   v2  v3  v4 )              (  d                  )
               (      d   e   v3  v4 )              (  e   d              )
               (          d   e   v4 )              (  v1  e   d          )
               (              d   e  )              (  v1  v2  e   d      )
               (                  d  )              (  v1  v2  v3  e   d  )

             where d and e denote diagonal and off-diagonal elements of T, and vi
             denotes an element of the vector defining H(i).

       Definition at line 176 of file zhetd2.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.