Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       zhetf2.f -

SYNOPSIS

   Functions/Subroutines
       subroutine zhetf2 (UPLO, N, A, LDA, IPIV, INFO)
           ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal
           pivoting method (unblocked algorithm, calling Level 2 BLAS).

Function/Subroutine Documentation

   subroutine zhetf2 (characterUPLO, integerN, complex*16, dimension( lda, * )A, integerLDA,
       integer, dimension( * )IPIV, integerINFO)
       ZHETF2 computes the factorization of a complex Hermitian matrix, using the diagonal
       pivoting method (unblocked algorithm, calling Level 2 BLAS).

       Purpose:

            ZHETF2 computes the factorization of a complex Hermitian matrix A
            using the Bunch-Kaufman diagonal pivoting method:

               A = U*D*U**H  or  A = L*D*L**H

            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, U**H is the conjugate transpose of U, and D is
            Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

            This is the unblocked version of the algorithm, calling Level 2 BLAS.

       Parameters:
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     Hermitian matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     n-by-n upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading n-by-n lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.

                     On exit, the block diagonal matrix D and the multipliers used
                     to obtain the factor U or L (see below for further details).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D.

                     If UPLO = 'U':
                        If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                        interchanged and D(k,k) is a 1-by-1 diagonal block.

                        If IPIV(k) = IPIV(k-1) < 0, then rows and columns
                        k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
                        is a 2-by-2 diagonal block.

                     If UPLO = 'L':
                        If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                        interchanged and D(k,k) is a 1-by-1 diagonal block.

                        If IPIV(k) = IPIV(k+1) < 0, then rows and columns
                        k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1)
                        is a 2-by-2 diagonal block.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -k, the k-th argument had an illegal value
                     > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                          has been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if it
                          is used to solve a system of equations.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2013

       Further Details:

             If UPLO = 'U', then A = U*D*U**H, where
                U = P(n)*U(n)* ... *P(k)U(k)* ...,
             i.e., U is a product of terms P(k)*U(k), where k decreases from n to
             1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    v    0   )   k-s
                U(k) =  (   0    I    0   )   s
                        (   0    0    I   )   n-k
                           k-s   s   n-k

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
             If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
             and A(k,k), and v overwrites A(1:k-2,k-1:k).

             If UPLO = 'L', then A = L*D*L**H, where
                L = P(1)*L(1)* ... *P(k)*L(k)* ...,
             i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
             n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    0     0   )  k-1
                L(k) =  (   0    I     0   )  s
                        (   0    v     I   )  n-k-s+1
                           k-1   s  n-k-s+1

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
             If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
             and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

       Contributors:

             09-29-06 - patch from
               Bobby Cheng, MathWorks

               Replace l.210 and l.393
                    IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
               by
                    IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN

             01-01-96 - Based on modifications by
               J. Lewis, Boeing Computer Services Company
               A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

       Definition at line 192 of file zhetf2.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.