Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       zhptrd.f -

SYNOPSIS

   Functions/Subroutines
       subroutine zhptrd (UPLO, N, AP, D, E, TAU, INFO)
           ZHPTRD

Function/Subroutine Documentation

   subroutine zhptrd (characterUPLO, integerN, complex*16, dimension( * )AP, double precision, dimension( * )D,
       double precision, dimension( * )E, complex*16, dimension( * )TAU, integerINFO)
       ZHPTRD

       Purpose:

            ZHPTRD reduces a complex Hermitian matrix A stored in packed form to
            real symmetric tridiagonal form T by a unitary similarity
            transformation: Q**H * A * Q = T.

       Parameters:
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           AP

                     AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
                     On exit, if UPLO = 'U', the diagonal and first superdiagonal
                     of A are overwritten by the corresponding elements of the
                     tridiagonal matrix T, and the elements above the first
                     superdiagonal, with the array TAU, represent the unitary
                     matrix Q as a product of elementary reflectors; if UPLO
                     = 'L', the diagonal and first subdiagonal of A are over-
                     written by the corresponding elements of the tridiagonal
                     matrix T, and the elements below the first subdiagonal, with
                     the array TAU, represent the unitary matrix Q as a product
                     of elementary reflectors. See Further Details.

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T:
                     D(i) = A(i,i).

           E

                     E is DOUBLE PRECISION array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

           TAU

                     TAU is COMPLEX*16 array, dimension (N-1)
                     The scalar factors of the elementary reflectors (see Further
                     Details).

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Further Details:

             If UPLO = 'U', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(n-1) . . . H(2) H(1).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
             overwriting A(1:i-1,i+1), and tau is stored in TAU(i).

             If UPLO = 'L', the matrix Q is represented as a product of elementary
             reflectors

                Q = H(1) H(2) . . . H(n-1).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
             overwriting A(i+2:n,i), and tau is stored in TAU(i).

       Definition at line 152 of file zhptrd.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.

Version 3.4.2                                    Wed Feb 26 2014                                     zhptrd.f(3)