Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       zlar2v.f -

SYNOPSIS

   Functions/Subroutines
       subroutine zlar2v (N, X, Y, Z, INCX, C, S, INCC)
           ZLAR2V applies a vector of plane rotations with real cosines and complex sines from
           both sides to a sequence of 2-by-2 symmetric/Hermitian matrices.

Function/Subroutine Documentation

   subroutine zlar2v (integerN, complex*16, dimension( * )X, complex*16, dimension( * )Y,
       complex*16, dimension( * )Z, integerINCX, double precision, dimension( * )C, complex*16,
       dimension( * )S, integerINCC)
       ZLAR2V applies a vector of plane rotations with real cosines and complex sines from both
       sides to a sequence of 2-by-2 symmetric/Hermitian matrices.

       Purpose:

            ZLAR2V applies a vector of complex plane rotations with real cosines
            from both sides to a sequence of 2-by-2 complex Hermitian matrices,
            defined by the elements of the vectors x, y and z. For i = 1,2,...,n

               (       x(i)  z(i) ) :=
               ( conjg(z(i)) y(i) )

                 (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i) -conjg(s(i)) )
                 ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)        c(i)  )

       Parameters:
           N

                     N is INTEGER
                     The number of plane rotations to be applied.

           X

                     X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
                     The vector x; the elements of x are assumed to be real.

           Y

                     Y is COMPLEX*16 array, dimension (1+(N-1)*INCX)
                     The vector y; the elements of y are assumed to be real.

           Z

                     Z is COMPLEX*16 array, dimension (1+(N-1)*INCX)
                     The vector z.

           INCX

                     INCX is INTEGER
                     The increment between elements of X, Y and Z. INCX > 0.

           C

                     C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
                     The cosines of the plane rotations.

           S

                     S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
                     The sines of the plane rotations.

           INCC

                     INCC is INTEGER
                     The increment between elements of C and S. INCC > 0.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           September 2012

       Definition at line 112 of file zlar2v.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.