Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all
NAME
zpbtrs.f -
SYNOPSIS
Functions/Subroutines subroutine zpbtrs (UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO) ZPBTRS
Function/Subroutine Documentation
subroutine zpbtrs (characterUPLO, integerN, integerKD, integerNRHS, complex*16, dimension( ldab, * )AB, integerLDAB, complex*16, dimension( ldb, * )B, integerLDB, integerINFO) ZPBTRS Purpose: ZPBTRS solves a system of linear equations A*X = B with a Hermitian positive definite band matrix A using the Cholesky factorization A = U**H *U or A = L*L**H computed by ZPBTRF. Parameters: UPLO UPLO is CHARACTER*1 = 'U': Upper triangular factor stored in AB; = 'L': Lower triangular factor stored in AB. N N is INTEGER The order of the matrix A. N >= 0. KD KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0. NRHS NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0. AB AB is COMPLEX*16 array, dimension (LDAB,N) The triangular factor U or L from the Cholesky factorization A = U**H *U or A = L*L**H of the band matrix A, stored in the first KD+1 rows of the array. The j-th column of U or L is stored in the j-th column of the array AB as follows: if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KD+1. B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side matrix B. On exit, the solution matrix X. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Definition at line 122 of file zpbtrs.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.