Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       zpftrf.f -

SYNOPSIS

   Functions/Subroutines
       subroutine zpftrf (TRANSR, UPLO, N, A, INFO)
           ZPFTRF

Function/Subroutine Documentation

   subroutine zpftrf (characterTRANSR, characterUPLO, integerN, complex*16, dimension( 0: * )A,
       integerINFO)
       ZPFTRF

       Purpose:

            ZPFTRF computes the Cholesky factorization of a complex Hermitian
            positive definite matrix A.

            The factorization has the form
               A = U**H * U,  if UPLO = 'U', or
               A = L  * L**H,  if UPLO = 'L',
            where U is an upper triangular matrix and L is lower triangular.

            This is the block version of the algorithm, calling Level 3 BLAS.

       Parameters:
           TRANSR

                     TRANSR is CHARACTER*1
                     = 'N':  The Normal TRANSR of RFP A is stored;
                     = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of RFP A is stored;
                     = 'L':  Lower triangle of RFP A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX array, dimension ( N*(N+1)/2 );
                     On entry, the Hermitian matrix A in RFP format. RFP format is
                     described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
                     then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
                     (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
                     the Conjugate-transpose of RFP A as defined when
                     TRANSR = 'N'. The contents of RFP A are defined by UPLO as
                     follows: If UPLO = 'U' the RFP A contains the nt elements of
                     upper packed A. If UPLO = 'L' the RFP A contains the elements
                     of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
                     'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
                     is odd. See the Note below for more details.

                     On exit, if INFO = 0, the factor U or L from the Cholesky
                     factorization RFP A = U**H*U or RFP A = L*L**H.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, the leading minor of order i is not
                           positive definite, and the factorization could not be
                           completed.

             Further Notes on RFP Format:
             ============================

             We first consider Standard Packed Format when N is even.
             We give an example where N = 6.

                AP is Upper             AP is Lower

              00 01 02 03 04 05       00
                 11 12 13 14 15       10 11
                    22 23 24 25       20 21 22
                       33 34 35       30 31 32 33
                          44 45       40 41 42 43 44
                             55       50 51 52 53 54 55

             Let TRANSR = 'N'. RFP holds AP as follows:
             For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
             three columns of AP upper. The lower triangle A(4:6,0:2) consists of
             conjugate-transpose of the first three columns of AP upper.
             For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
             three columns of AP lower. The upper triangle A(0:2,0:2) consists of
             conjugate-transpose of the last three columns of AP lower.
             To denote conjugate we place -- above the element. This covers the
             case N even and TRANSR = 'N'.

                    RFP A                   RFP A

                                           -- -- --
                   03 04 05                33 43 53
                                              -- --
                   13 14 15                00 44 54
                                                 --
                   23 24 25                10 11 55

                   33 34 35                20 21 22
                   --
                   00 44 45                30 31 32
                   -- --
                   01 11 55                40 41 42
                   -- -- --
                   02 12 22                50 51 52

             Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
             transpose of RFP A above. One therefore gets:

                      RFP A                   RFP A

                -- -- -- --                -- -- -- -- -- --
                03 13 23 33 00 01 02    33 00 10 20 30 40 50
                -- -- -- -- --                -- -- -- -- --
                04 14 24 34 44 11 12    43 44 11 21 31 41 51
                -- -- -- -- -- --                -- -- -- --
                05 15 25 35 45 55 22    53 54 55 22 32 42 52

             We next  consider Standard Packed Format when N is odd.
             We give an example where N = 5.

                AP is Upper                 AP is Lower

              00 01 02 03 04              00
                 11 12 13 14              10 11
                    22 23 24              20 21 22
                       33 34              30 31 32 33
                          44              40 41 42 43 44

             Let TRANSR = 'N'. RFP holds AP as follows:
             For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
             three columns of AP upper. The lower triangle A(3:4,0:1) consists of
             conjugate-transpose of the first two   columns of AP upper.
             For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
             three columns of AP lower. The upper triangle A(0:1,1:2) consists of
             conjugate-transpose of the last two   columns of AP lower.
             To denote conjugate we place -- above the element. This covers the
             case N odd  and TRANSR = 'N'.

                    RFP A                   RFP A

                                              -- --
                   02 03 04                00 33 43
                                                 --
                   12 13 14                10 11 44

                   22 23 24                20 21 22
                   --
                   00 33 34                30 31 32
                   -- --
                   01 11 44                40 41 42

             Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
             transpose of RFP A above. One therefore gets:

                      RFP A                   RFP A

                -- -- --                   -- -- -- -- -- --
                02 12 22 00 01             00 10 20 30 40 50
                -- -- -- --                   -- -- -- -- --
                03 13 23 33 11             33 11 21 31 41 51
                -- -- -- -- --                   -- -- -- --
                04 14 24 34 44             43 44 22 32 42 52

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Definition at line 212 of file zpftrf.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.