Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       dgbrfs.f -

SYNOPSIS

   Functions/Subroutines
       subroutine dgbrfs (TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, B, LDB, X, LDX,
           FERR, BERR, WORK, IWORK, INFO)
           DGBRFS

Function/Subroutine Documentation

   subroutine dgbrfs (characterTRANS, integerN, integerKL, integerKU, integerNRHS, double
       precision, dimension( ldab, * )AB, integerLDAB, double precision, dimension( ldafb, *
       )AFB, integerLDAFB, integer, dimension( * )IPIV, double precision, dimension( ldb, * )B,
       integerLDB, double precision, dimension( ldx, * )X, integerLDX, double precision,
       dimension( * )FERR, double precision, dimension( * )BERR, double precision, dimension( *
       )WORK, integer, dimension( * )IWORK, integerINFO)
       DGBRFS

       Purpose:

            DGBRFS improves the computed solution to a system of linear
            equations when the coefficient matrix is banded, and provides
            error bounds and backward error estimates for the solution.

       Parameters:
           TRANS

                     TRANS is CHARACTER*1
                     Specifies the form of the system of equations:
                     = 'N':  A * X = B     (No transpose)
                     = 'T':  A**T * X = B  (Transpose)
                     = 'C':  A**H * X = B  (Conjugate transpose = Transpose)

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KL

                     KL is INTEGER
                     The number of subdiagonals within the band of A.  KL >= 0.

           KU

                     KU is INTEGER
                     The number of superdiagonals within the band of A.  KU >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           AB

                     AB is DOUBLE PRECISION array, dimension (LDAB,N)
                     The original band matrix A, stored in rows 1 to KL+KU+1.
                     The j-th column of A is stored in the j-th column of the
                     array AB as follows:
                     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KL+KU+1.

           AFB

                     AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
                     Details of the LU factorization of the band matrix A, as
                     computed by DGBTRF.  U is stored as an upper triangular band
                     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     the multipliers used during the factorization are stored in
                     rows KL+KU+2 to 2*KL+KU+1.

           LDAFB

                     LDAFB is INTEGER
                     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     The pivot indices from DGBTRF; for 1<=i<=N, row i of the
                     matrix was interchanged with row IPIV(i).

           B

                     B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     The right hand side matrix B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                     On entry, the solution matrix X, as computed by DGBTRS.
                     On exit, the improved solution matrix X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           FERR

                     FERR is DOUBLE PRECISION array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is DOUBLE PRECISION array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is DOUBLE PRECISION array, dimension (3*N)

           IWORK

                     IWORK is INTEGER array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Internal Parameters:

             ITMAX is the maximum number of steps of iterative refinement.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Definition at line 204 of file dgbrfs.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.