Provided by: liblapack-doc-man_3.5.0-2ubuntu1_all bug

NAME

       dporfs.f -

SYNOPSIS

   Functions/Subroutines
       subroutine dporfs (UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX, FERR, BERR, WORK,
           IWORK, INFO)
           DPORFS

Function/Subroutine Documentation

   subroutine dporfs (characterUPLO, integerN, integerNRHS, double precision, dimension( lda, *
       )A, integerLDA, double precision, dimension( ldaf, * )AF, integerLDAF, double precision,
       dimension( ldb, * )B, integerLDB, double precision, dimension( ldx, * )X, integerLDX,
       double precision, dimension( * )FERR, double precision, dimension( * )BERR, double
       precision, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)
       DPORFS

       Purpose:

            DPORFS improves the computed solution to a system of linear
            equations when the coefficient matrix is symmetric positive definite,
            and provides error bounds and backward error estimates for the
            solution.

       Parameters:
           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NRHS

                     NRHS is INTEGER
                     The number of right hand sides, i.e., the number of columns
                     of the matrices B and X.  NRHS >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
                     upper triangular part of A contains the upper triangular part
                     of the matrix A, and the strictly lower triangular part of A
                     is not referenced.  If UPLO = 'L', the leading N-by-N lower
                     triangular part of A contains the lower triangular part of
                     the matrix A, and the strictly upper triangular part of A is
                     not referenced.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           AF

                     AF is DOUBLE PRECISION array, dimension (LDAF,N)
                     The triangular factor U or L from the Cholesky factorization
                     A = U**T*U or A = L*L**T, as computed by DPOTRF.

           LDAF

                     LDAF is INTEGER
                     The leading dimension of the array AF.  LDAF >= max(1,N).

           B

                     B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                     The right hand side matrix B.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.  LDB >= max(1,N).

           X

                     X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                     On entry, the solution matrix X, as computed by DPOTRS.
                     On exit, the improved solution matrix X.

           LDX

                     LDX is INTEGER
                     The leading dimension of the array X.  LDX >= max(1,N).

           FERR

                     FERR is DOUBLE PRECISION array, dimension (NRHS)
                     The estimated forward error bound for each solution vector
                     X(j) (the j-th column of the solution matrix X).
                     If XTRUE is the true solution corresponding to X(j), FERR(j)
                     is an estimated upper bound for the magnitude of the largest
                     element in (X(j) - XTRUE) divided by the magnitude of the
                     largest element in X(j).  The estimate is as reliable as
                     the estimate for RCOND, and is almost always a slight
                     overestimate of the true error.

           BERR

                     BERR is DOUBLE PRECISION array, dimension (NRHS)
                     The componentwise relative backward error of each solution
                     vector X(j) (i.e., the smallest relative change in
                     any element of A or B that makes X(j) an exact solution).

           WORK

                     WORK is DOUBLE PRECISION array, dimension (3*N)

           IWORK

                     IWORK is INTEGER array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Internal Parameters:

             ITMAX is the maximum number of steps of iterative refinement.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Definition at line 183 of file dporfs.f.

Author

       Generated automatically by Doxygen for LAPACK from the source code.