Provided by: libmodbus-dev_3.0.5-1_amd64
NAME
libmodbus - a fast and portable Modbus library
SYNOPSIS
#include <modbus.h> cc `pkg-config --cflags --libs libmodbus` files
DESCRIPTION
libmodbus is a library to send/receive data with a device which respects the Modbus protocol. This library contains various backends to communicate over different networks (eg. serial in RTU mode or Ethernet in TCP/IPv6). The http://www.modbus.org site provides documentation about the protocol at http://www.modbus.org/specs.php. libmodbus provides an abstraction of the lower communication layers and offers the same API on all supported platforms. This documentation presents an overview of libmodbus concepts, describes how libmodbus abstracts Modbus communication with different hardware and platforms and provides a reference manual for the functions provided by the libmodbus library. Contexts The Modbus protocol contains many variants (eg. serial RTU or Ehternet TCP), to ease the implementation of a variant, the library was designed to use a backend for each variant. The backends are also a convenient way to fulfill other requirements (eg. real-time operations). Each backend offers a specific function to create a new modbus_t context. The modbus_t context is an opaque structure containing all necessary information to establish a connection with others Modbus devices according to the selected variant. You can choose the best context for your needs among: RTU Context The RTU backend (Remote Terminal Unit) is used in serial communication and makes use of a compact, binary representation of the data for protocol communication. The RTU format follows the commands/data with a cyclic redundancy check checksum as an error check mechanism to ensure the reliability of data. Modbus RTU is the most common implementation available for Modbus. A Modbus RTU message must be transmitted continuously without inter-character hesitations (extract from Wikipedia, Modbus, http://en.wikipedia.org/wiki/Modbus (as of Mar. 13, 2011, 20:51 GMT). The Modbus RTU framing calls a slave, a device/service which handle Modbus requests, and a master, a client which send requests. The communication is always initiated by the master. Many Modbus devices can be connected together on the same physical link so you need to define which slave is concerned by the message with modbus_set_slave(3). If you’re running a slave, the slave number is used to filter messages. Create a Modbus RTU context modbus_new_rtu(3) Set the serial mode modbus_rtu_get_serial_mode(3)modbus_rtu_set_serial_mode(3) TCP (IPv4) Context The TCP backend implements a Modbus variant used for communications over TCP/IPv4 networks. It does not require a checksum calculation as lower layer takes care of the same. Create a Modbus TCP context modbus_new_tcp(3) TCP PI (IPv4 and IPv6) Context The TCP PI (Protocol Indepedent) backend implements a Modbus variant used for communications over TCP IPv4 and IPv6 networks. It does not require a checksum calculation as lower layer takes care of the same. Contrary to the TCP IPv4 only backend, the TCP PI backend offers hostname resolution but it consumes about 1Kb of additional memory. Create a Modbus TCP context modbus_new_tcp_pi(3) Common Before using any libmodbus functions, the caller must allocate and initialize a modbus_t context with functions explained above, then the following functions are provided to modify and free a context: Free libmodbus context modbus_free(3) Context setters and getters modbus_get_byte_timeout(3)modbus_set_byte_timeout(3)modbus_set_debug(3)modbus_set_error_recovery(3)modbus_get_header_length(3)modbus_get_response_timeout(3)modbus_set_response_timeout(3)modbus_set_slave(3)modbus_set_socket(3)modbus_get_socket(3) A libmodbus context is thread safe and may be shared among as many application threads as necessary, without any additional locking required on the part of the caller. Macros for data manipulation MODBUS_GET_HIGH_BYTE(data), extracts the high byte from a byte MODBUS_GET_LOW_BYTE(data), extracts the low byte from a byte MODBUS_GET_INT32_FROM_INT16(tab_int16, index), builds an int32 from the two first int16 starting at tab_int16[index] MODBUS_GET_INT16_FROM_INT8(tab_int8, index), builds an int16 from the two first int8 starting at tab_int8[index] MODBUS_SET_INT16_TO_INT8(tab_int8, index, value), set an int16 value into the two first bytes starting at tab_int8[index] Functions for data manipulation modbus_set_bits_from_byte(3)modbus_set_bits_from_bytes(3)modbus_get_byte_from_bits(3)modbus_get_float(3)modbus_set_float(3) Connection The following functions are provided to establish and close a connection with Modbus devices: Establish a connection modbus_connect(3) Close a connection modbus_close(3) Flush a connection modbus_flush(3) Client The Modbus protocol defines different data types and functions to read and write them from/to remote devices. The following functions are used by the clients to send Modbus requests: Read data modbus_read_bits(3)modbus_read_input_bits(3)modbus_read_registers(3)modbus_read_input_registers(3)modbus_report_slave_id(3) Write data modbus_write_bit(3)modbus_write_register(3)modbus_write_bits(3)modbus_write_registers(3) Write and read data modbus_write_and_read_registers(3) Raw requests modbus_send_raw_request(3)modbus_receive_confirmation(3) Reply an exception modbus_reply_exception(3) Server The server is waiting for request from clients and must answer when it is concerned by the request. The libmodbus offers the following functions to handle requests: Data mapping: modbus_mapping_new(3) modbus_mapping_free(3) Receive modbus_receive(3) Reply modbus_reply(3)modbus_reply_exception(3)
ERROR HANDLING
The libmodbus functions handle errors using the standard conventions found on POSIX systems. Generally, this means that upon failure a libmodbus function shall return either a NULL value (if returning a pointer) or a negative value (if returning an integer), and the actual error code shall be stored in the errno variable. The modbus_strerror() function is provided to translate libmodbus-specific error codes into error message strings; for details refer to modbus_strerror(3).
MISCELLANEOUS
The LIBMODBUS_VERSION_STRING constant indicates the libmodbus version the program has been compiled against. The variables libmodbus_version_major, libmodbus_version_minor, libmodbus_version_micro give the version the program is linked against.
AUTHORS
The libmodbus documentation was written by Stéphane Raimbault <stephane.raimbault@gmail.com[1]>
RESOURCES
Main web site: http://www.libmodbus.org/ Report bugs on the issue tracker at http://github.com/stephane/libmodbus/issues.
COPYING
Free use of this software is granted under the terms of the GNU Lesser General Public License (LGPL v2.1+). For details see the files COPYING and COPYING.LESSER included with the libmodbus distribution.
NOTES
1. stephane.raimbault@gmail.com mailto:stephane.raimbault@gmail.com