Provided by: makedumpfile_1.5.5-2ubuntu1.6_amd64 bug

NAME

       makedumpfile - make a small dumpfile of kdump

SYNOPSIS

       makedumpfile    [OPTION] [-x VMLINUX|-i VMCOREINFO] VMCORE DUMPFILE
       makedumpfile -F [OPTION] [-x VMLINUX|-i VMCOREINFO] VMCORE
       makedumpfile   [OPTION] -x VMLINUX [--config FILTERCONFIGFILE] [--eppic EPPICMACRO] VMCORE
       DUMPFILE
       makedumpfile -R DUMPFILE
       makedumpfile --split  [OPTION]  [-x  VMLINUX|-i  VMCOREINFO]  VMCORE  DUMPFILE1  DUMPFILE2
       [DUMPFILE3 ..]
       makedumpfile --reassemble DUMPFILE1 DUMPFILE2 [DUMPFILE3 ..] DUMPFILE
       makedumpfile -g VMCOREINFO -x VMLINUX
       makedumpfile -E [--xen-syms XEN-SYMS|--xen-vmcoreinfo VMCOREINFO] VMCORE DUMPFILE
       makedumpfile --dump-dmesg [-x VMLINUX|-i VMCOREINFO] VMCORE LOGFILE
       makedumpfile    [OPTION] -x VMLINUX --diskset=VMCORE1 --diskset=VMCORE2 [--diskset=VMCORE3
       ..] DUMPFILE
       makedumpfile -h
       makedumpfile -v

DESCRIPTION

       With kdump, the memory image of the first kernel (called "panicked kernel") can  be  taken
       as  /proc/vmcore  while  the  second kernel (called "kdump kernel" or "capture kernel") is
       running. This document represents /proc/vmcore  as  VMCORE.  makedumpfile  makes  a  small
       DUMPFILE by compressing dump data or by excluding unnecessary pages for analysis, or both.
       makedumpfile needs the first kernel's  debug  information,  so  that  it  can  distinguish
       unnecessary  pages by analyzing how the first kernel uses the memory.  The information can
       be taken from VMLINUX or VMCOREINFO.

       makedumpfile can exclude the following types of pages while copying  VMCORE  to  DUMPFILE,
       and a user can choose which type of pages will be excluded.
       - Pages filled with zero
       - Cache pages without private pages
       - All cache pages with private pages
       - User process data pages
       - Free pages

       makedumpfile  provides  two  DUMPFILE  formats  (the  ELF  format and the kdump-compressed
       format). By default, makedumpfile makes a DUMPFILE in  the  kdump-compressed  format.  The
       kdump-compressed  format  is  readable  only with the crash utility, and it can be smaller
       than the ELF format because of the compression support. The ELF format  is  readable  with
       GDB  and  the  crash  utility.   If  a  user  wants  to use GDB, DUMPFILE format has to be
       explicitly specified to be the ELF format.

       Apart from the exclusion of unnecessary pages mentioned above, makedumpfile allows user to
       filter  out  targeted  kernel  data.  The  filter  config  file  can  be  used  to specify
       kernel/module symbols and its members that need to  be  filtered  out  through  the  erase
       command  syntax.  makedumpfile  reads  the  filter  config  and  builds the list of memory
       addresses and its sizes after  processing  filter  commands.  The  memory  locations  that
       require  to  be  filtered  out  are then poisoned with character 'X' (58 in Hex). Refer to
       makedumpfile.conf(5) for file format.

       Eppic macros can also be used to specify kernel symbols and its members that  need  to  be
       filtered.  Eppic  provides  C  semantics including language constructs such as conditional
       statements, logical and arithmetic operators, functions,  nested  loops  to  traverse  and
       erase   kernel   data.   --eppic   requires   eppic_makedumpfile.so   and  eppic  library.
       eppic_makedumpfile.so   can   be   built    from    makedumpfile    source.    Refer    to
       http://code.google.com/p/eppic/ to build eppic library libeppic.a and for more information
       on writing eppic macros.

       To analyze the first kernel's memory usage, makedumpfile can refer to  VMCOREINFO  instead
       of  VMLINUX.  VMCOREINFO  contains  the  first kernel's information (structure size, field
       offset, etc.), and VMCOREINFO is small enough to be  included  into  the  second  kernel's
       initrd.
       If  the  second  kernel  is  running  on  its  initrd without mounting a root file system,
       makedumpfile cannot refer to VMLINUX because the second kernel's initrd cannot  include  a
       large  file  like VMLINUX. To solve the problem, makedumpfile makes VMCOREINFO beforehand,
       and it refers to VMCOREINFO instead of VMLINUX while the second kernel is running.
       VMCORE has contained VMCOREINFO since linux-2.6.24, and a user does not  need  to  specify
       neither -x nor -i option.

       If  the  second  kernel  is running on its initrd without mounting any file system, a user
       needs to transport the dump data to a remote host. To transport  the  dump  data  by  SSH,
       makedumpfile  outputs  the  dump data in the intermediate format (the flattened format) to
       the standard output. By piping the output data to SSH, a user can transport the dump  data
       to  a  remote  host.  Note that analysis tools (crash utility before version 5.1.2 or GDB)
       cannot read the flattened format directly, so on a remote host the received  data  in  the
       flattened  format needs to be rearranged to a readable DUMPFILE format by makedumpfile (or
       makedumpfile-R.pl).

       makedumpfile can read a DUMPFILE in the kdump-compressed format instead of VMCORE and  re-
       filter  it. This feature is useful in situation that users need to reduce the file size of
       DUMPFILE for sending it somewhere by ftp/scp/etc. (If all of the  page  types,  which  are
       specified  by  a  new  dump_level,  are  excluded from an original DUMPFILE already, a new
       DUMPFILE is the same as an original DUMPFILE.)
       For example, makedumpfile can  create  a  DUMPFILE  of  dump_level  31  from  the  one  of
       dump_level 3 like the following:
       Example:
       # makedumpfile -c -d 3 /proc/vmcore dumpfile.1
       # makedumpfile -c -d 31 dumpfile.1 dumpfile.2

       makedumpfile can read VMCORE(s) in three kinds of sadump formats: single partition format,
       diskset format and media backup format, and can convert each of them into kdump-compressed
       format  with  filtering  and  compression  processing.  Note that for VMCORE(s) created by
       sadump, you always need to pass VMLINUX with -x option. Also,  to  pass  multiple  VMCOREs
       created on diskset configuration, you need to use --diskset option.

OPTIONS

       -c,-l,-p
              Compress  dump  data  by  each  page using zlib for -c option, lzo for -l option or
              snappy for -p option.  (-l option needs USELZO=on and -p option needs  USESNAPPY=on
              when building)
              A  user  cannot specify this option with -E option, because the ELF format does not
              support compressed data.
              Example:
              # makedumpfile -c -d 31 -x vmlinux /proc/vmcore dumpfile

       -d dump_level
              Specify the type of unnecessary page for analysis.
              Pages of the specified type are not copied to DUMPFILE. The page type marked in the
              following  table is excluded. A user can specify multiple page types by setting the
              sum of each page type for dump_level. The maximum of dump_level is 31. Note that  a
              dump_level  for  Xen dump filtering is 0 or 1 on a machine other than x86_64 (On an
              x86_64 machine, it is possible to specify 2 or bigger as a dump_level).
              If specifying multiple dump_levels with the delimiter ',', makedumpfile retries  to
              create  a DUMPFILE by other dump_level when "No space on device" error happens. For
              example, if  dump_level  is  "11,31"  and  makedumpfile  fails  by  dump_level  11,
              makedumpfile retries it by dump_level 31.
              Example:
              # makedumpfile -d 11 -x vmlinux /proc/vmcore dumpfile
              # makedumpfile -d 11,31 -x vmlinux /proc/vmcore dumpfile

                     |      |cache  |cache  |      |
                dump | zero |without|with   | user | free
               level | page |private|private| data | page
              -------+------+-------+-------+------+------
                   0 |      |       |       |      |
                   1 |  X   |       |       |      |
                   2 |      |   X   |       |      |
                   3 |  X   |   X   |       |      |
                   4 |      |   X   |   X   |      |
                   5 |  X   |   X   |   X   |      |
                   6 |      |   X   |   X   |      |
                   7 |  X   |   X   |   X   |      |
                   8 |      |       |       |  X   |
                   9 |  X   |       |       |  X   |
                  10 |      |   X   |       |  X   |
                  11 |  X   |   X   |       |  X   |
                  12 |      |   X   |   X   |  X   |
                  13 |  X   |   X   |   X   |  X   |
                  14 |      |   X   |   X   |  X   |
                  15 |  X   |   X   |   X   |  X   |
                  16 |      |       |       |      |  X
                  17 |  X   |       |       |      |  X
                  18 |      |   X   |       |      |  X
                  19 |  X   |   X   |       |      |  X
                  20 |      |   X   |   X   |      |  X
                  21 |  X   |   X   |   X   |      |  X
                  22 |      |   X   |   X   |      |  X
                  23 |  X   |   X   |   X   |      |  X
                  24 |      |       |       |  X   |  X
                  25 |  X   |       |       |  X   |  X
                  26 |      |   X   |       |  X   |  X
                  27 |  X   |   X   |       |  X   |  X
                  28 |      |   X   |   X   |  X   |  X
                  29 |  X   |   X   |   X   |  X   |  X
                  30 |      |   X   |   X   |  X   |  X
                  31 |  X   |   X   |   X   |  X   |  X

       -E     Create DUMPFILE in the ELF format.
              This  option cannot be specified with either of -c option or -l option, because the
              ELF format does not support compressed data.
              Example:
              # makedumpfile -E -d 31 -x vmlinux /proc/vmcore dumpfile

       -f     Force existing DUMPFILE to be overwritten.
              Example:
              # makedumpfile -f -d 31 -x vmlinux /proc/vmcore dumpfile
              This command overwrites DUMPFILE even if it already exists.

       -x VMLINUX
              Specify the first kernel's VMLINUX with debug  information  to  analyze  the  first
              kernel's memory usage.
              This  option is necessary if VMCORE does not contain VMCOREINFO, [-i VMCOREINFO] is
              not specified, and dump_level is 2 or more.
              The page size of the first kernel and the second kernel should match.
              Example:
              # makedumpfile -d 31 -x vmlinux /proc/vmcore dumpfile

       -i VMCOREINFO
              Specify VMCOREINFO instead of VMLINUX  for  analyzing  the  first  kernel's  memory
              usage.
              VMCOREINFO  should  be  made  beforehand  by  makedumpfile  with  -g option, and it
              contains the first kernel's information.
              This option is necessary if VMCORE does not contain VMCOREINFO, [-x VMLINUX] is not
              specified, and dump_level is 2 or more.
              Example:
              # makedumpfile -d 31 -i vmcoreinfo /proc/vmcore dumpfile

       -g VMCOREINFO
              Generate VMCOREINFO from the first kernel's VMLINUX with debug information.
              VMCOREINFO  must  be generated on the system that is running the first kernel. With
              -i option, a user can specify VMCOREINFO generated on  the  other  system  that  is
              running the same first kernel. [-x VMLINUX] must be specified.
              Example:
              # makedumpfile -g vmcoreinfo -x vmlinux

       --config FILTERCONFIGFILE
              Used  in  conjunction  with  -x  VMLINUX  option, to specify the filter config file
              FILTERCONFIGFILE that contains erase commands to filter  out  desired  kernel  data
              from  vmcore  while  creating  DUMPFILE.  For filter command syntax please refer to
              makedumpfile.conf(5).

       --eppic EPPICMACRO
              Used in conjunction with -x VMLINUX option, to specify the eppic  macro  file  that
              contains  filter  rules  or directory that contains eppic macro files to filter out
              desired kernel data  from  vmcore  while  creating  DUMPFILE.   When  directory  is
              specified, all the eppic macros in the directory are processed.

       -F     Output  the  dump  data  in  the  flattened  format  to  the  standard  output  for
              transporting the dump data by SSH.
              Analysis tools (crash  utility  before  version  5.1.2  or  GDB)  cannot  read  the
              flattened  format  directly.  For  analysis,  the dump data in the flattened format
              should be rearranged to a normal DUMPFILE (readable  with  analysis  tools)  by  -R
              option.  By  which option is specified with -F option, the format of the rearranged
              DUMPFILE is fixed.  In other words, it is impossible to specify the DUMPFILE format
              when  the  dump  data is rearranged with -R option. If specifying -E option with -F
              option, the format of the rearranged DUMPFILE is the ELF format. Otherwise,  it  is
              the  kdump-compressed  format. All the messages are output to standard error output
              by -F option because standard output is used for the dump data.
              Example:
              # makedumpfile -F -c -d 31 -x vmlinux /proc/vmcore \
              | ssh user@host "cat > dumpfile.tmp"
              # makedumpfile -F -c -d 31 -x vmlinux /proc/vmcore \
              | ssh user@host "makedumpfile -R dumpfile"
              # makedumpfile -F -E -d 31 -i vmcoreinfo  /proc/vmcore \
              | ssh user@host "makedumpfile -R dumpfile"
              # makedumpfile -F -E --xen-vmcoreinfo VMCOREINFO /proc/vmcore \
              | ssh user@host "makedumpfile -R dumpfile"

       -R     Rearrange the dump data in the flattened format from the standard input to a normal
              DUMPFILE (readable with analysis tools).
              Example:
              # makedumpfile -R dumpfile < dumpfile.tmp
              # makedumpfile -F -d 31 -x vmlinux /proc/vmcore \
              | ssh user@host "makedumpfile -R dumpfile"

              Instead  of  using -R option, a perl script "makedumpfile-R.pl" rearranges the dump
              data in the flattened format to a normal DUMPFILE, too. The perl  script  does  not
              depend  on architecture, and most systems have perl command.  Even if a remote host
              does not have makedumpfile, it is possible  to  rearrange  the  dump  data  in  the
              flattened format to a readable DUMPFILE on a remote host by running this script.
              Example:
              # makedumpfile -F -d 31 -x vmlinux /proc/vmcore \
              | ssh user@host "makedumpfile-R.pl dumpfile"

       --split
              Split  the  dump data to multiple DUMPFILEs in parallel. If specifying DUMPFILEs on
              different storage devices, a device can share I/O load with other  devices  and  it
              reduces  time  for  saving the dump data. The file size of each DUMPFILE is smaller
              than the system memory size which is divided  by  the  number  of  DUMPFILEs.  This
              feature supports only the kdump-compressed format.
              Example:
              # makedumpfile --split -d 31 -x vmlinux /proc/vmcore dumpfile1 dumpfile2

       --reassemble
              Reassemble  multiple  DUMPFILEs,  which  are  created  by  --split option, into one
              DUMPFILE. dumpfile1 and dumpfile2 are reassembled into dumpfile  on  the  following
              example.
              Example:
              # makedumpfile --reassemble dumpfile1 dumpfile2 dumpfile

       -b <order>
              Cache  2^order pages in ram when generating DUMPFILE before writing to output.  The
              default value is 4.

       --cyclic-buffer buffer_size
              Specify the buffer size in kilo bytes for analysis in the cyclic  mode.   Actually,
              the  double  of  buffer_size kilo bytes will be allocated in memory.  In the cyclic
              mode, the number of cycles is represented as:

                  num_of_cycles = system_memory / (buffer_size * 1024 * bit_per_bytes * page_size
              )

              The  lesser  number  of  cycles, the faster working speed is expected.  By default,
              buffer_size will be calculated automatically depending on system  memory  size,  so
              ordinary users don't need to specify this option.

              Example:
              # makedumpfile --cyclic-buffer 1024 -d 31 -x vmlinux /proc/vmcore dumpfile

       --non-cyclic
              Running  in  the  non-cyclic  mode,  this mode uses the old filtering logic same as
              v1.4.4 or before.  If you feel the cyclic mode is too slow, please try this mode.
              Example:
              # makedumpfile --non-cyclic -d 31 -x vmlinux /proc/vmcore dumpfile

       --non-mmap
              Never use mmap(2) to read VMCORE even if it supports mmap(2).   Generally,  reading
              VMCORE  with  mmap(2)  is  faster  than without it, so ordinary users don't need to
              specify this option.  This option is mainly for debugging.
              Example:
              # makedumpfile --non-mmap -d 31 -x vmlinux /proc/vmcore dumpfile

       --xen-syms XEN-SYMS
              Specify the XEN-SYMS with debug information to  analyze  the  xen's  memory  usage.
              This  option  extracts  the  part of xen and domain-0.  -E option must be specified
              with this option.
              Example:
              # makedumpfile -E --xen-syms xen-syms /proc/vmcore dumpfile

       --xen-vmcoreinfo VMCOREINFO
              Specify VMCOREINFO instead of XEN-SYMS for analyzing the xen's memory usage.
              VMCOREINFO should be made  beforehand  by  makedumpfile  with  -g  option,  and  it
              contains the xen's information.  -E option must be specified with this option.
              Example:
              # makedumpfile -E --xen-vmcoreinfo VMCOREINFO /proc/vmcore dumpfile

       -X     Exclude all the user domain pages from Xen kdump's VMCORE, and extracts the part of
              xen and domain-0. If VMCORE contains VMCOREINFO for Xen, it  is  not  necessary  to
              specify  --xen-syms  and  --xen-vmcoreinfo.   -E option must be specified with this
              option.
              Example:
              # makedumpfile -E -X /proc/vmcore dumpfile

       --xen_phys_start xen_phys_start_address
              This option is only for x86_64.  Specify the  xen_phys_start_address,  if  the  xen
              code/data  is relocatable and VMCORE does not contain xen_phys_start_address in the
              CRASHINFO.  xen_phys_start_address can be taken from the line of  "Hypervisor  code
              and data" in /proc/iomem. For example, specify 0xcee00000 as xen_phys_start_address
              if /proc/iomem is the following:
                -------------------------------------------------------
                # cat /proc/iomem
                ...
                  cee00000-cfd99999 : Hypervisor code and data
                ...
                -------------------------------------------------------

              Example:
              # makedumpfile -E -X --xen_phys_start 0xcee00000 /proc/vmcore dumpfile

       --message-level message_level
              Specify the message types.
              Users can restrict outputs printed by specifying message_level  with  this  option.
              The  message  type marked with an X in the following table is printed. For example,
              according to the table, specifying 7 as  message_level  means  progress  indicator,
              common  message,  and  error message are printed, and this is a default value. Note
              that the maximum value of message_level is 31.

               message | progress | common  | error   | debug   | report
               level   | indicator| message | message | message | message
              ---------+----------+---------+---------+---------+---------
                     0 |          |         |         |         |
                     1 |    X     |         |         |         |
                     2 |          |    X    |         |         |
                     3 |    X     |    X    |         |         |
                     4 |          |         |    X    |         |
                     5 |    X     |         |    X    |         |
                     6 |          |    X    |    X    |         |
                   * 7 |    X     |    X    |    X    |         |
                     8 |          |         |         |    X    |
                     9 |    X     |         |         |    X    |
                    10 |          |    X    |         |    X    |
                    11 |    X     |    X    |         |    X    |
                    12 |          |         |    X    |    X    |
                    13 |    X     |         |    X    |    X    |
                    14 |          |    X    |    X    |    X    |
                    15 |    X     |    X    |    X    |    X    |
                    16 |          |         |         |         |    X
                    17 |    X     |         |         |         |    X
                    18 |          |    X    |         |         |    X
                    19 |    X     |    X    |         |         |    X
                    20 |          |         |    X    |         |    X
                    21 |    X     |         |    X    |         |    X
                    22 |          |    X    |    X    |         |    X
                    23 |    X     |    X    |    X    |         |    X
                    24 |          |         |         |    X    |    X
                    25 |    X     |         |         |    X    |    X
                    26 |          |    X    |         |    X    |    X
                    27 |    X     |    X    |         |    X    |    X
                    28 |          |         |    X    |    X    |    X
                    29 |    X     |         |    X    |    X    |    X
                    30 |          |    X    |    X    |    X    |    X
                    31 |    X     |    X    |    X    |    X    |    X

       --vtop virtual_address
              This option is useful, when user debugs the translation problem of virtual address.
              If  specifing  virtual_address, its physical address is printed. It makes debugging
              easy by comparing the output of this option with the one of  "vtop"  subcommand  of
              the crash utility.  "--vtop" option only prints the translation output, and it does
              not affect the dumpfile creation.

       --dump-dmesg
              This option overrides the normal behavior of makedumpfile.  Instead of  compressing
              and  filtering a VMCORE to make it smaller, it simply extracts the dmesg log from a
              VMCORE and writes it to the  specified  LOGFILE.  If  a  VMCORE  does  not  contain
              VMCOREINFO for dmesg, it is necessary to specfiy [-x VMLINUX] or [-i VMCOREINFO].

              Example:
              # makedumpfile --dump-dmesg /proc/vmcore dmesgfile
              # makedumpfile --dump-dmesg -x vmlinux /proc/vmcore dmesgfile

       --diskset=VMCORE
              Specify multiple VMCOREs created on sadump diskset configuration the same number of
              times as the number of VMCOREs in increasing order from left to right.  VMCOREs are
              assembled into a single DUMPFILE.

              Example:
              # makedumpfile -x vmlinux --diskset=vmcore1 --diskset=vmcore2 dumpfile

       -D     Print debugging message.

       -h (--help)
              Show help message and LZO/snappy support status (enabled/disabled).

       -v     Show the version of makedumpfile.

ENVIRONMENT VARIABLES

       TMPDIR  This  environment  variable is for a temporary memory bitmap file only in the non-
               cyclic mode.  If your machine has a lots of memory and  you  use  tmpfs  on  /tmp,
               makedumpfile  can  fail for a little memory in the 2nd kernel because makedumpfile
               makes a very large temporary memory bitmap  file  in  this  case.  To  avoid  this
               failure,  you  can  set  a TMPDIR environment variable. If you do not set a TMPDIR
               environment variable, makedumpfile uses /tmp directory for a temporary bitmap file
               as a default.

DIAGNOSTICS

       makedumpfile exits with the following value.

       0 : makedumpfile succeeded.

       1 : makedumpfile failed without the following reasons.

       2 : makedumpfile failed due to the different version between  VMLINUX and VMCORE.

       3 : makedumpfile failed due to the analysis error of the memory.

AUTHORS

       Written by Masaki Tachibana, and Ken'ichi Ohmichi.

SEE ALSO

       crash(8), gdb(1), kexec(8), makedumpfile.conf(5)