xenial (1) grdmath.1gmt.gz

Provided by: gmt-common_5.2.1+dfsg-3build1_all bug

NAME

       grdmath - Reverse Polish Notation (RPN) calculator for grids (element by element)

SYNOPSIS

       grdmath  [ min_area[/min_level/max_level][+ag|i|s |S][+r|l][ppercent] ] [ resolution[+] ] [ increment ] [
       ] [  ] [ region ] [ [level] ] [ -bi<binary> ] [ -di<nodata> ] [ -f<flags> ] [ -h<headers> ] [ -i<flags> ]
       [ -n<flags> ] [ -r ] [ -x[[-]n] ] operand [ operand ] OPERATOR [ operand ] OPERATOR ... = outgrdfile

       Note: No space is allowed between the option flag and the associated arguments.

DESCRIPTION

       grdmath  will  perform  operations  like add, subtract, multiply, and divide on one or more grid files or
       constants  using  Reverse  Polish  Notation  (RPN)  syntax  (e.g.,   Hewlett-Packard   calculator-style).
       Arbitrarily  complicated expressions may therefore be evaluated; the final result is written to an output
       grid file. Grid operations are element-by-element, not matrix manipulations. Some operators only  require
       one operand (see below). If no grid files are used in the expression then options -R, -I must be set (and
       optionally -r). The expression = outgrdfile can occur as many times as the depth of the stack  allows  in
       order  to  save  intermediate results.  Complicated or frequently occurring expressions may be coded as a
       macro for future use or stored and recalled via named memory locations.

REQUIRED ARGUMENTS

       operand
              If operand can be opened as a file it will be read  as  a  grid  file.   If  not  a  file,  it  is
              interpreted as a numerical constant or a special symbol (see below).

       outgrdfile
              The name of a 2-D grid file that will hold the final result. (See GRID FILE FORMATS below).

OPTIONAL ARGUMENTS

       -Amin_area[/min_level/max_level][+ag|i|s|S][+r|l][+ppercent]
              Features  with  an  area smaller than min_area in km^2 or of hierarchical level that is lower than
              min_level or higher than max_level will not be plotted [Default is 0/0/4 (all features)].  Level 2
              (lakes) contains regular lakes and wide river bodies which we normally include as lakes; append +r
              to just get river-lakes or +l to just get regular lakes.  By default (+ai) we select the ice shelf
              boundary  as  the coastline for Antarctica; append +ag to instead select the ice grounding line as
              coastline.  For expert users who wish to print their own Antarctica coastline and islands via psxy
              you  can use +as to skip all GSHHG features below 60S or +aS to instead skip all features north of
              60S.  Finally, append +ppercent to exclude polygons whose percentage  area  of  the  corresponding
              full-resolution feature is less than percent. See GSHHG INFORMATION below for more details. (-A is
              only relevant to the LDISTG operator)

       -Dresolution[+]
              Selects the resolution of  the  data  set  to  use  with  the  operator  LDISTG  ((f)ull,  (h)igh,
              (i)ntermediate, (l)ow, and (c)rude). The resolution drops off by 80% between data sets [Default is
              l].  Append + to automatically select a lower resolution should the one requested not be available
              [abort if not found].

       -Ixinc[unit][=|+][/yinc[unit][=|+]]
              x_inc  [and  optionally  y_inc]  is  the  grid  spacing.  Optionally,  append  a  suffix modifier.
              Geographical (degrees) coordinates: Append m to indicate arc minutes or s to indicate arc seconds.
              If  one  of the units e, f, k, M, n or u is appended instead, the increment is assumed to be given
              in meter, foot, km, Mile, nautical mile or US survey foot, respectively, and will be converted  to
              the  equivalent  degrees longitude at the middle latitude of the region (the conversion depends on
              PROJ_ELLIPSOID). If /y_inc is given but set to 0 it will be reset equal  to  x_inc;  otherwise  it
              will  be  converted  to degrees latitude. All coordinates: If = is appended then the corresponding
              max x (east) or y (north) may be slightly adjusted to fit exactly the given increment [by  default
              the  increment  may  be  adjusted slightly to fit the given domain]. Finally, instead of giving an
              increment you may specify the number of nodes desired by  appending  +  to  the  supplied  integer
              argument;  the  increment  is  then  recalculated  from  the  number  of nodes and the domain. The
              resulting  increment  value  depends  on  whether  you  have  selected  a  gridline-registered  or
              pixel-registered  grid; see App-file-formats for details. Note: if -Rgrdfile is used then the grid
              spacing has already been initialized; use -I to override the values.

       -M     By default any derivatives calculated are in z_units/ x(or y)_units. However, the user may  choose
              this  option  to  convert  dx,dy  in  degrees of longitude,latitude into meters using a flat Earth
              approximation, so that gradients are in z_units/meter.

       -N     Turn off strict domain match checking when multiple grids are  manipulated  [Default  will  insist
              that each grid domain is within 1e-4 * grid_spacing of the domain of the first grid listed].

       -R[unit]xmin/xmax/ymin/ymax[r] (more ...)
              Specify the region of interest.

       -V[level] (more ...)
              Select verbosity level [c].

       -bi[ncols][t] (more ...)
              Select  native  binary  input.  The  binary  input option only applies to the data files needed by
              operators LDIST, PDIST, and INSIDE.

       -dinodata (more ...)
              Replace input columns that equal nodata with NaN.

       -f[i|o]colinfo (more ...)
              Specify data types of input and/or output columns.

       -g[a]x|y|d|X|Y|D|[col]z[+|-]gap[u] (more ...)
              Determine data gaps and line breaks.

       -h[i|o][n][+c][+d][+rremark][+rtitle] (more ...)
              Skip or produce header record(s).

       -icols[l][sscale][ooffset][,...] (more ...)
              Select input columns (0 is first column).

       -n[b|c|l|n][+a][+bBC][+c][+tthreshold] (more ...)
              Select interpolation mode for grids.

       -r (more ...)
              Set pixel node registration [gridline]. Only used with -R -I.

       -x[[-]n] (more ...)
              Limit number of cores used in multi-threaded algorithms (OpenMP required).

       -^ or just -
              Print a short message about the syntax of the command, then exits (NOTE: on Windows use just -).

       -+ or just +
              Print an extensive usage (help) message, including the explanation of any  module-specific  option
              (but not the GMT common options), then exits.

       -? or no arguments
              Print a complete usage (help) message, including the explanation of options, then exits.

       --version
              Print GMT version and exit.

       --show-datadir
              Print full path to GMT share directory and exit.

OPERATORS

       Choose among the following 169 operators. "args" are the number of input and output arguments.

                                   ┌──────────┬──────┬──────────────────────────────┐
                                   │Operator  │ args │ Returns                      │
                                   └──────────┴──────┴──────────────────────────────┘

                                   │ABS       │ 1 1  │ abs (A)                      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ACOS      │ 1 1  │ acos (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ACOSH     │ 1 1  │ acosh (A)                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ACOT      │ 1 1  │ acot (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ACSC      │ 1 1  │ acsc (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ADD       │ 2 1  │ A + B                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │AND       │ 2 1  │ B if A == NaN, else A        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ARC       │ 2 1  │ return arc(A,B) on [0 pi]    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ASEC      │ 1 1  │ asec (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ASIN      │ 1 1  │ asin (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ASINH     │ 1 1  │ asinh (A)                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ATAN      │ 1 1  │ atan (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ATAN2     │ 2 1  │ atan2 (A, B)                 │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ATANH     │ 1 1  │ atanh (A)                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BCDF      │ 3 1  │ Binomial          cumulative │
                                   │          │      │ distribution function for  p │
                                   │          │      │ = A, n = B, and x = C        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BPDF      │ 3 1  │ Binomial probability density │
                                   │          │      │ function for p = A, n  =  B, │
                                   │          │      │ and x = C                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BEI       │ 1 1  │ bei (A)                      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BER       │ 1 1  │ ber (A)                      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BITAND    │ 2 1  │ A & B (bitwise AND operator) │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BITLEFT   │ 2 1  │ A  <<  B (bitwise left-shift │
                                   │          │      │ operator)                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BITNOT    │ 1 1  │ ~A  (bitwise  NOT  operator, │
                                   │          │      │ i.e.,      return      two's │
                                   │          │      │ complement)                  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BITOR     │ 2 1  │ A | B (bitwise OR operator)  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BITRIGHT  │ 2 1  │ A >> B (bitwise  right-shift │
                                   │          │      │ operator)                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BITTEST   │ 2 1  │ 1 if bit B of A is set, else │
                                   │          │      │ 0 (bitwise TEST operator)    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │BITXOR    │ 2 1  │ A ^ B (bitwise XOR operator) │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CAZ       │ 2 1  │ Cartesian azimuth from  grid │
                                   │          │      │ nodes to stack x,y (i.e., A, │
                                   │          │      │ B)                           │
                                   └──────────┴──────┴──────────────────────────────┘

                                   │CBAZ      │ 2 1  │ Cartesian back-azimuth  from │
                                   │          │      │ grid   nodes  to  stack  x,y │
                                   │          │      │ (i.e., A, B)                 │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CDIST     │ 2 1  │ Cartesian  distance  between │
                                   │          │      │ grid  nodes  and  stack  x,y │
                                   │          │      │ (i.e., A, B)                 │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CDIST2    │ 2 1  │ As CDIST but only  to  nodes │
                                   │          │      │ that are != 0                │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CEIL      │ 1 1  │ ceil  (A)  (smallest integer │
                                   │          │      │ >= A)                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CHICRIT   │ 2 1  │ Chi-squared  critical  value │
                                   │          │      │ for alpha = A and nu = B     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CHICDF    │ 2 1  │ Chi-squared       cumulative │
                                   │          │      │ distribution  function   for │
                                   │          │      │ chi2 = A and nu = B          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CHIPDF    │ 2 1  │ Chi-squared      probability │
                                   │          │      │ density function for chi2  = │
                                   │          │      │ A and nu = B                 │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │COMB      │ 2 1  │ Combinations n_C_r, with n = │
                                   │          │      │ A and r = B                  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CORRCOEFF │ 2 1  │ Correlation coefficient r(A, │
                                   │          │      │ B)                           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │COS       │ 1 1  │ cos (A) (A in radians)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │COSD      │ 1 1  │ cos (A) (A in degrees)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │COSH      │ 1 1  │ cosh (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │COT       │ 1 1  │ cot (A) (A in radians)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │COTD      │ 1 1  │ cot (A) (A in degrees)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CSC       │ 1 1  │ csc (A) (A in radians)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CSCD      │ 1 1  │ csc (A) (A in degrees)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │CURV      │ 1 1  │ Curvature of A (Laplacian)   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │D2DX2     │ 1 1  │ d^2(A)/dx^2 2nd derivative   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │D2DY2     │ 1 1  │ d^2(A)/dy^2 2nd derivative   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │D2DXY     │ 1 1  │ d^2(A)/dxdy 2nd derivative   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │D2R       │ 1 1  │ Converts Degrees to Radians  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │DDX       │ 1 1  │ d(A)/dx      Central     1st │
                                   │          │      │ derivative                   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │DDY       │ 1 1  │ d(A)/dy     Central      1st │
                                   │          │      │ derivative                   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │DEG2KM    │ 1 1  │ Converts  Spherical  Degrees │
                                   │          │      │ to Kilometers                │
                                   └──────────┴──────┴──────────────────────────────┘

                                   │DENAN     │ 2 1  │ Replace  NaNs  in   A   with │
                                   │          │      │ values from B                │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │DILOG     │ 1 1  │ dilog (A)                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │DIV       │ 2 1  │ A / B                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │DUP       │ 1 2  │ Places duplicate of A on the │
                                   │          │      │ stack                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ECDF      │ 2 1  │ Exponential       cumulative │
                                   │          │      │ distribution  function for x │
                                   │          │      │ = A and lambda = B           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ECRIT     │ 2 1  │ Exponential     distribution │
                                   │          │      │ critical value for alpha = A │
                                   │          │      │ and lambda = B               │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │EPDF      │ 2 1  │ Exponential      probability │
                                   │          │      │ density  function  for x = A │
                                   │          │      │ and lambda = B               │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ERF       │ 1 1  │ Error function erf (A)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ERFC      │ 1 1  │ Complementary Error function │
                                   │          │      │ erfc (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │EQ        │ 2 1  │ 1 if A == B, else 0          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ERFINV    │ 1 1  │ Inverse error function of A  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │EXCH      │ 2 2  │ Exchanges  A  and  B  on the │
                                   │          │      │ stack                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │EXP       │ 1 1  │ exp (A)                      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │FACT      │ 1 1  │ A! (A factorial)             │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │EXTREMA   │ 1 1  │ Local  Extrema:   +2/-2   is │
                                   │          │      │ max/min,   +1/-1  is  saddle │
                                   │          │      │ with   max/min   in   x,   0 │
                                   │          │      │ elsewhere                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │FCDF      │ 3 1  │ F   cumulative  distribution │
                                   │          │      │ function for F = A, nu1 = B, │
                                   │          │      │ and nu2 = C                  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │FCRIT     │ 3 1  │ F    distribution   critical │
                                   │          │      │ value for alpha = A,  nu1  = │
                                   │          │      │ B, and nu2 = C               │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │FLIPLR    │ 1 1  │ Reverse  order  of values in │
                                   │          │      │ each row                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │FLIPUD    │ 1 1  │ Reverse order of  values  in │
                                   │          │      │ each column                  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │FLOOR     │ 1 1  │ floor  (A) (greatest integer │
                                   │          │      │ <= A)                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │FMOD      │ 2 1  │ A  %  B   (remainder   after │
                                   │          │      │ truncated division)          │
                                   └──────────┴──────┴──────────────────────────────┘

                                   │FPDF      │ 3 1  │ F     probability    density │
                                   │          │      │ function for F = A, nu1 = B, │
                                   │          │      │ and nu2 = C                  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │GE        │ 2 1  │ 1 if A >= B, else 0          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │GT        │ 2 1  │ 1 if A > B, else 0           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │HYPOT     │ 2 1  │ hypot  (A,  B) = sqrt (A*A + │
                                   │          │      │ B*B)                         │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │I0        │ 1 1  │ Modified Bessel function  of │
                                   │          │      │ A (1st kind, order 0)        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │I1        │ 1 1  │ Modified  Bessel function of │
                                   │          │      │ A (1st kind, order 1)        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │IFELSE    │ 3 1  │ B if A != 0, else C          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │IN        │ 2 1  │ Modified Bessel function  of │
                                   │          │      │ A (1st kind, order B)        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │INRANGE   │ 3 1  │ 1 if B <= A <= C, else 0     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │INSIDE    │ 1 1  │ 1    when   inside   or   on │
                                   │          │      │ polygon(s) in A, else 0      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │INV       │ 1 1  │ 1 / A                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ISFINITE  │ 1 1  │ 1 if A is finite, else 0     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ISNAN     │ 1 1  │ 1 if A == NaN, else 0        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │J0        │ 1 1  │ Bessel function  of  A  (1st │
                                   │          │      │ kind, order 0)               │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │J1        │ 1 1  │ Bessel  function  of  A (1st │
                                   │          │      │ kind, order 1)               │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │JN        │ 2 1  │ Bessel function  of  A  (1st │
                                   │          │      │ kind, order B)               │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │K0        │ 1 1  │ Modified  Kelvin function of │
                                   │          │      │ A (2nd kind, order 0)        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │K1        │ 1 1  │ Modified Bessel function  of │
                                   │          │      │ A (2nd kind, order 1)        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │KEI       │ 1 1  │ kei (A)                      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │KER       │ 1 1  │ ker (A)                      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │KM2DEG    │ 1 1  │ Converts    Kilometers    to │
                                   │          │      │ Spherical Degrees            │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │KN        │ 2 1  │ Modified Bessel function  of │
                                   │          │      │ A (2nd kind, order B)        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │KURT      │ 1 1  │ Kurtosis of A                │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LCDF      │ 1 1  │ Laplace           cumulative │
                                   │          │      │ distribution function for  z │
                                   │          │      │ = A                          │
                                   └──────────┴──────┴──────────────────────────────┘

                                   │LCRIT     │ 1 1  │ Laplace         distribution │
                                   │          │      │ critical value for alpha = A │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LDIST     │ 1 1  │ Compute minimum distance (in │
                                   │          │      │ km  if  -fg)  from  lines in │
                                   │          │      │ multi-segment ASCII file A   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LDIST2    │ 2 1  │ As  LDIST,  from  lines   in │
                                   │          │      │ ASCII  file  B  but  only to │
                                   │          │      │ nodes where A != 0           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LDISTG    │ 0 1  │ As LDIST,  but  operates  on │
                                   │          │      │ the  GSHHG  dataset (see -A, │
                                   │          │      │ -D for options).             │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LE        │ 2 1  │ 1 if A <= B, else 0          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LOG       │ 1 1  │ log (A) (natural log)        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LOG10     │ 1 1  │ log10 (A) (base 10)          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LOG1P     │ 1 1  │ log  (1+A)   (accurate   for │
                                   │          │      │ small A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LOG2      │ 1 1  │ log2 (A) (base 2)            │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LMSSCL    │ 1 1  │ LMS scale estimate (LMS STD) │
                                   │          │      │ of A                         │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LOWER     │ 1 1  │ The lowest  (minimum)  value │
                                   │          │      │ of A                         │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LPDF      │ 1 1  │ Laplace  probability density │
                                   │          │      │ function for z = A           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LRAND     │ 2 1  │ Laplace  random  noise  with │
                                   │          │      │ mean A and std. deviation B  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │LT        │ 2 1  │ 1 if A < B, else 0           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │MAD       │ 1 1  │ Median   Absolute  Deviation │
                                   │          │      │ (L1 STD) of A                │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │MAX       │ 2 1  │ Maximum of A and B           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │MEAN      │ 1 1  │ Mean value of A              │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │MED       │ 1 1  │ Median value of A            │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │MIN       │ 2 1  │ Minimum of A and B           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │MOD       │ 2 1  │ A  mod  B  (remainder  after │
                                   │          │      │ floored division)            │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │MODE      │ 1 1  │ Mode  value (Least Median of │
                                   │          │      │ Squares) of A                │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │MUL       │ 2 1  │ A * B                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │NAN       │ 2 1  │ NaN if A == B, else A        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │NEG       │ 1 1  │ -A                           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │NEQ       │ 2 1  │ 1 if A != B, else 0          │
                                   └──────────┴──────┴──────────────────────────────┘

                                   │NORM      │ 1 1  │ Normalize       (A)       so │
                                   │          │      │ max(A)-min(A) = 1            │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │NOT       │ 1 1  │ NaN  if  A == NaN, 1 if A == │
                                   │          │      │ 0, else 0                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │NRAND     │ 2 1  │ Normal, random  values  with │
                                   │          │      │ mean A and std. deviation B  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │OR        │ 2 1  │ NaN if B == NaN, else A      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PCDF      │ 2 1  │ Poisson           cumulative │
                                   │          │      │ distribution function for  x │
                                   │          │      │ = A and lambda = B           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PDIST     │ 1 1  │ Compute minimum distance (in │
                                   │          │      │ km if -fg)  from  points  in │
                                   │          │      │ ASCII file A                 │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PDIST2    │ 2 1  │ As  PDIST,  from  points  in │
                                   │          │      │ ASCII file  B  but  only  to │
                                   │          │      │ nodes where A != 0           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PERM      │ 2 1  │ Permutations n_P_r, with n = │
                                   │          │      │ A and r = B                  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PLM       │ 3 1  │ Associated          Legendre │
                                   │          │      │ polynomial   P(A)  degree  B │
                                   │          │      │ order C                      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PLMg      │ 3 1  │ Normalized        associated │
                                   │          │      │ Legendre   polynomial   P(A) │
                                   │          │      │ degree     B     order     C │
                                   │          │      │ (geophysical convention)     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │POINT     │ 1 2  │ Compute  mean  x  and y from │
                                   │          │      │ ASCII file A and place  them │
                                   │          │      │ on the stack                 │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │POP       │ 1 0  │ Delete  top element from the │
                                   │          │      │ stack                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │POW       │ 2 1  │ A ^ B                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PPDF      │ 2 1  │ Poisson         distribution │
                                   │          │      │ P(x,lambda),  with x = A and │
                                   │          │      │ lambda = B                   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PQUANT    │ 2 1  │ The B'th  Quantile  (0-100%) │
                                   │          │      │ of A                         │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PSI       │ 1 1  │ Psi (or Digamma) of A        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │PV        │ 3 1  │ Legendre  function  Pv(A) of │
                                   │          │      │ degree v = real(B) + imag(C) │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │QV        │ 3 1  │ Legendre function  Qv(A)  of │
                                   │          │      │ degree v = real(B) + imag(C) │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │R2        │ 2 1  │ R2 = A^2 + B^2               │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │R2D       │ 1 1  │ Convert Radians to Degrees   │
                                   └──────────┴──────┴──────────────────────────────┘

                                   │RAND      │ 2 1  │ Uniform     random    values │
                                   │          │      │ between A and B              │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │RCDF      │ 1 1  │ Rayleigh          cumulative │
                                   │          │      │ distribution  function for z │
                                   │          │      │ = A                          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │RCRIT     │ 1 1  │ Rayleigh        distribution │
                                   │          │      │ critical value for alpha = A │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │RINT      │ 1 1  │ rint  (A) (round to integral │
                                   │          │      │ value nearest to A)          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │RPDF      │ 1 1  │ Rayleigh probability density │
                                   │          │      │ function for z = A           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ROLL      │ 2 0  │ Cyclicly  shifts  the  top A │
                                   │          │      │ stack items by an amount B   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ROTX      │ 2 1  │ Rotate A by  the  (constant) │
                                   │          │      │ shift B in x-direction       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ROTY      │ 2 1  │ Rotate  A  by the (constant) │
                                   │          │      │ shift B in y-direction       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SDIST     │ 2 1  │ Spherical             (Great │
                                   │          │      │ circle|geodesic)    distance │
                                   │          │      │ (in km)  between  nodes  and │
                                   │          │      │ stack (A, B)                 │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SDIST2    │ 2 1  │ As  SDIST  but only to nodes │
                                   │          │      │ that are != 0                │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SAZ       │ 2 1  │ Spherical azimuth from  grid │
                                   │          │      │ nodes   to  stack  lon,  lat │
                                   │          │      │ (i.e., A, B)                 │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SBAZ      │ 2 1  │ Spherical back-azimuth  from │
                                   │          │      │ grid nodes to stack lon, lat │
                                   │          │      │ (i.e., A, B)                 │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SEC       │ 1 1  │ sec (A) (A in radians)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SECD      │ 1 1  │ sec (A) (A in degrees)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SIGN      │ 1 1  │ sign (+1 or -1) of A         │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SIN       │ 1 1  │ sin (A) (A in radians)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SINC      │ 1 1  │ sinc (A) (sin (pi*A)/(pi*A)) │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SIND      │ 1 1  │ sin (A) (A in degrees)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SINH      │ 1 1  │ sinh (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SKEW      │ 1 1  │ Skewness of A                │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SQR       │ 1 1  │ A^2                          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SQRT      │ 1 1  │ sqrt (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │STD       │ 1 1  │ Standard deviation of A      │
                                   └──────────┴──────┴──────────────────────────────┘

                                   │STEP      │ 1 1  │ Heaviside   step   function: │
                                   │          │      │ H(A)                         │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │STEPX     │ 1 1  │ Heaviside  step  function in │
                                   │          │      │ x: H(x-A)                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │STEPY     │ 1 1  │ Heaviside step  function  in │
                                   │          │      │ y: H(y-A)                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SUB       │ 2 1  │ A - B                        │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │SUM       │ 1 1  │ Sum of all values in A       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │TAN       │ 1 1  │ tan (A) (A in radians)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │TAND      │ 1 1  │ tan (A) (A in degrees)       │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │TANH      │ 1 1  │ tanh (A)                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │TAPER     │ 2 1  │ Unit  weights cosine-tapered │
                                   │          │      │ to zero within A and B of  x │
                                   │          │      │ and y grid margins           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │TCDF      │ 2 1  │ Student's    t    cumulative │
                                   │          │      │ distribution function for  t │
                                   │          │      │ = A, and nu = B              │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │TCRIT     │ 2 1  │ Student's   t   distribution │
                                   │          │      │ critical value for alpha = A │
                                   │          │      │ and nu = B                   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │TN        │ 2 1  │ Chebyshev         polynomial │
                                   │          │      │ Tn(-1<t<+1,n), with t  =  A, │
                                   │          │      │ and n = B                    │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │TPDF      │ 2 1  │ Student's    t   probability │
                                   │          │      │ density function for t =  A, │
                                   │          │      │ and nu = B                   │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │UPPER     │ 1 1  │ The  highest (maximum) value │
                                   │          │      │ of A                         │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │WCDF      │ 3 1  │ Weibull           cumulative │
                                   │          │      │ distribution  function for x │
                                   │          │      │ = A, scale = B, and shape  = │
                                   │          │      │ C                            │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │WCRIT     │ 3 1  │ Weibull         distribution │
                                   │          │      │ critical value for  alpha  = │
                                   │          │      │ A, scale = B, and shape = C  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │WPDF      │ 3 1  │ Weibull density distribution │
                                   │          │      │ P(x,scale,shape), with  x  = │
                                   │          │      │ A, scale = B, and shape = C  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │WRAP      │ 1 1  │ wrap   A   in  radians  onto │
                                   │          │      │ [-pi,pi]                     │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │XOR       │ 2 1  │ 0 if A == NaN and B ==  NaN, │
                                   │          │      │ NaN if B == NaN, else A      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │Y0        │ 1 1  │ Bessel  function  of  A (2nd │
                                   │          │      │ kind, order 0)               │
                                   └──────────┴──────┴──────────────────────────────┘

                                   │Y1        │ 1 1  │ Bessel function  of  A  (2nd │
                                   │          │      │ kind, order 1)               │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │YLM       │ 2 2  │ Re  and  Im  orthonormalized │
                                   │          │      │ spherical harmonics degree A │
                                   │          │      │ order B                      │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │YLMg      │ 2 2  │ Cos   and   Sin   normalized │
                                   │          │      │ spherical harmonics degree A │
                                   │          │      │ order     B     (geophysical │
                                   │          │      │ convention)                  │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │YN        │ 2 1  │ Bessel function  of  A  (2nd │
                                   │          │      │ kind, order B)               │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ZCDF      │ 1 1  │ Normal            cumulative │
                                   │          │      │ distribution function for  z │
                                   │          │      │ = A                          │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ZPDF      │ 1 1  │ Normal  probability  density │
                                   │          │      │ function for z = A           │
                                   ├──────────┼──────┼──────────────────────────────┤
                                   │ZCRIT     │ 1 1  │ Normal distribution critical │
                                   │          │      │ value for alpha = A          │
                                   └──────────┴──────┴──────────────────────────────┘

SYMBOLS

       The following symbols have special meaning:

                                   ┌───────┬───────────────────────────────────────┐
                                   │PI     │ 3.1415926...                          │
                                   ├───────┼───────────────────────────────────────┤
                                   │E      │ 2.7182818...                          │
                                   ├───────┼───────────────────────────────────────┤
                                   │EULER  │ 0.5772156...                          │
                                   ├───────┼───────────────────────────────────────┤
                                   │EPS_F  │ 1.192092896e-07   (single   precision │
                                   │       │ epsilon                               │
                                   ├───────┼───────────────────────────────────────┤
                                   │XMIN   │ Minimum x value                       │
                                   ├───────┼───────────────────────────────────────┤
                                   │XMAX   │ Maximum x value                       │
                                   ├───────┼───────────────────────────────────────┤
                                   │XRANGE │ Range of x values                     │
                                   ├───────┼───────────────────────────────────────┤
                                   │XINC   │ x increment                           │
                                   ├───────┼───────────────────────────────────────┤
                                   │NX     │ The number of x nodes                 │
                                   ├───────┼───────────────────────────────────────┤
                                   │YMIN   │ Minimum y value                       │
                                   ├───────┼───────────────────────────────────────┤
                                   │YMAX   │ Maximum y value                       │
                                   ├───────┼───────────────────────────────────────┤
                                   │YRANGE │ Range of y values                     │
                                   ├───────┼───────────────────────────────────────┤
                                   │YINC   │ y increment                           │
                                   ├───────┼───────────────────────────────────────┤
                                   │NY     │ The number of y nodes                 │
                                   ├───────┼───────────────────────────────────────┤
                                   │X      │ Grid with x-coordinates               │
                                   ├───────┼───────────────────────────────────────┤
                                   │Y      │ Grid with y-coordinates               │
                                   └───────┴───────────────────────────────────────┘

                                   │XNORM  │ Grid  with  normalized  [-1  to   +1] │
                                   │       │ x-coordinates                         │
                                   ├───────┼───────────────────────────────────────┤
                                   │YNORM  │ Grid   with  normalized  [-1  to  +1] │
                                   │       │ y-coordinates                         │
                                   ├───────┼───────────────────────────────────────┤
                                   │XCOL   │ Grid with column numbers 0,  1,  ..., │
                                   │       │ NX-1                                  │
                                   ├───────┼───────────────────────────────────────┤
                                   │YROW   │ Grid with row numbers 0, 1, ..., NY-1 │
                                   └───────┴───────────────────────────────────────┘

NOTES ON OPERATORS

       1.  The operator SDIST calculates spherical distances in km between the (lon, lat) point on the stack and
           all node positions in the grid. The grid domain and the (lon,  lat)  point  are  expected  to  be  in
           degrees.   Similarly,  the  SAZ  and  SBAZ operators calculate spherical azimuth and back-azimuths in
           degrees, respectively. The operators LDIST and PDIST compute spherical distances in km if -fg is  set
           or  implied, else they return Cartesian distances. Note: If the current PROJ_ELLIPSOID is ellipsoidal
           then geodesics are used in calculations of distances, which can be slow.  You can  trade  speed  with
           accuracy by changing the algorithm used to compute the geodesic (see PROJ_GEODESIC).

           The  operator  LDISTG  is  a  version of LDIST that operates on the GSHHG data. Instead of reading an
           ASCII file, it directly accesses one of the GSHHG data sets as determined by the -D and -A options.

       2.  The operator POINT reads a ASCII table, computes the mean x and mean y values and places these on the
           stack.  If geographic data then we use the mean 3-D vector to determine the mean location.

       3.  The operator PLM calculates the associated Legendre polynomial of degree L and order M (0 <= M <= L),
           and its argument is the sine of the latitude. PLM is not normalized and includes the  Condon-Shortley
           phase  (-1)^M.  PLMg is normalized in the way that is most commonly used in geophysics. The C-S phase
           can be added by using -M as argument.  PLM will overflow at higher degrees, whereas  PLMg  is  stable
           until ultra high degrees (at least 3000).

       4.  The  operators YLM and YLMg calculate normalized spherical harmonics for degree L and order M (0 <= M
           <= L) for all positions in the grid, which is assumed to be in  degrees.  YLM  and  YLMg  return  two
           grids,  the  real  (cosine) and imaginary (sine) component of the complex spherical harmonic. Use the
           POP operator (and EXCH) to get rid of one of them, or save both by giving two consecutive  =  file.nc
           calls.

           The  orthonormalized  complex  harmonics  YLM  are  most commonly used in physics and seismology. The
           square of YLM integrates to 1 over a sphere. In geophysics, YLMg is normalized to produce unit  power
           when  averaging  the  cosine  and  sine  terms  (separately!) over a sphere (i.e., their squares each
           integrate to 4 pi). The Condon-Shortley phase (-1)^M is not included in YLM or YLMg, but  it  can  be
           added by using -M as argument.

       5.  All the derivatives are based on central finite differences, with natural boundary conditions.

       6.  Files  that  have  the same names as some operators, e.g., ADD, SIGN, =, etc. should be identified by
           prepending the current directory (i.e., ./LOG).

       7.  Piping of files is not allowed.

       8.  The stack depth limit is hard-wired to 100.

       9.  All functions expecting a positive radius (e.g., LOG, KEI, etc.) are passed  the  absolute  value  of
           their  argument.  (9)  The  bitwise operators (BITAND, BITLEFT, BITNOT, BITOR, BITRIGHT, BITTEST, and
           BITXOR) convert a grid's single precision values to unsigned  32-bit  ints  to  perform  the  bitwise
           operations.  Consequently, the largest whole integer value that can be stored in a float grid is 2^24
           or 16,777,216. Any higher result will be masked to fit in the lower 24 bits.   Thus,  bit  operations
           are  effectively  limited  to  24  bit.   All  bitwise operators return NaN if given NaN arguments or
           bit-settings <= 0.

       10. When OpenMP support is compiled in, a few operators will take advantage of the ability to spread  the
           load onto several cores.  At present, the list of such operators is: LDIST.

GRID VALUES PRECISION

       Regardless  of  the precision of the input data, GMT programs that create grid files will internally hold
       the grids in 4-byte floating point arrays. This is done to conserve memory and furthermore  most  if  not
       all  real data can be stored using 4-byte floating point values. Data with higher precision (i.e., double
       precision values) will lose that precision once GMT operates on the grid or  writes  out  new  grids.  To
       limit  loss  of  precision  when processing data you should always consider normalizing the data prior to
       processing.

GRID FILE FORMATS

       By default GMT writes out grid as single precision floats  in  a  COARDS-complaint  netCDF  file  format.
       However,  GMT  is  able  to  produce  grid  files  in many other commonly used grid file formats and also
       facilitates so called "packing" of grids, writing out floating point data as 1- or  2-byte  integers.  To
       specify  the  precision, scale and offset, the user should add the suffix =id[/scale/offset[/nan]], where
       id is a two-letter identifier of the grid type and precision, and scale and  offset  are  optional  scale
       factor  and  offset to be applied to all grid values, and nan is the value used to indicate missing data.
       In case the two characters id is not provided, as in =/scale than  a  id=nf  is  assumed.   When  reading
       grids,  the  format  is generally automatically recognized. If not, the same suffix can be added to input
       grid file names. See grdconvert and Section grid-file-format of the GMT Technical Reference and  Cookbook
       for more information.

       When  reading  a  netCDF  file  that  contains  multiple  grids,  GMT  will  read,  by default, the first
       2-dimensional grid that can find in that  file.  To  coax  GMT  into  reading  another  multi-dimensional
       variable  in  the grid file, append ?varname to the file name, where varname is the name of the variable.
       Note that you may need to escape the special meaning of ? in your shell program by putting a backslash in
       front  of  it, or by placing the filename and suffix between quotes or double quotes. The ?varname suffix
       can also be used for output grids to specify a  variable  name  different  from  the  default:  "z".  See
       grdconvert and Sections modifiers-for-CF and grid-file-format of the GMT Technical Reference and Cookbook
       for more information, particularly on how to read splices of 3-, 4-, or 5-dimensional grids.

GEOGRAPHICAL AND TIME COORDINATES

       When the output grid type is netCDF, the coordinates will be labeled "longitude", "latitude",  or  "time"
       based  on the attributes of the input data or grid (if any) or on the -f or -R options. For example, both
       -f0x -f1t and -R90w/90e/0t/3t will result in a longitude/time grid. When the x, y,  or  z  coordinate  is
       time, it will be stored in the grid as relative time since epoch as specified by TIME_UNIT and TIME_EPOCH
       in the gmt.conf file or on the command line. In addition, the unit attribute of the  time  variable  will
       indicate both this unit and epoch.

STORE, RECALL AND CLEAR

       You may store intermediate calculations to a named variable that you may recall and place on the stack at
       a later time. This is useful if you need access to a computed quantity many times in your  expression  as
       it  will  shorten  the  overall  expression and improve readability. To save a result you use the special
       operator STO@label, where label is the name you choose to give the quantity. To recall the stored  result
       to  the  stack  at  a  later  time,  use  [RCL]@label, i.e., RCL is optional. To clear memory you may use
       CLR@label. Note that STO and CLR leave the stack unchanged.

GSHHS INFORMATION

       The coastline database is GSHHG (formerly GSHHS) which is compiled  from  three  sources:   World  Vector
       Shorelines  (WVS), CIA World Data Bank II (WDBII), and Atlas of the Cryosphere (AC, for Antarctica only).
       Apart from Antarctica, all level-1 polygons (ocean-land boundary) are derived from the more accurate  WVS
       while   all   higher   level  polygons  (level  2-4,  representing  land/lake,  lake/island-in-lake,  and
       island-in-lake/lake-in-island-in-lake boundaries) are taken from WDBII.  The Antarctica  coastlines  come
       in  two  flavors:  ice-front  or grounding line, selectable via the -A option.  Much processing has taken
       place to convert WVS, WDBII, and AC data into usable form for GMT: assembling closed polygons  from  line
       segments,  checking  for  duplicates,  and  correcting  for crossings between polygons.  The area of each
       polygon has been determined so that the user may choose not to draw features smaller than a minimum  area
       (see  -A);  one  may  also  limit  the  highest  hierarchical  level of polygons to be included (4 is the
       maximum). The 4 lower-resolution databases were derived from  the  full  resolution  database  using  the
       Douglas-Peucker  line-simplification  algorithm.  The classification of rivers and borders follow that of
       the WDBII. See the GMT Cookbook and Technical Reference Appendix K for further details.

MACROS

       Users may save their favorite operator combinations as  macros  via  the  file  grdmath.macros  in  their
       current  or  user  directory.  The  file may contain any number of macros (one per record); comment lines
       starting with # are skipped. The format for the macros is name = arg1 arg2 ... arg2 : comment where  name
       is  how  the macro will be used. When this operator appears on the command line we simply replace it with
       the listed argument list. No macro may call another macro. As an example,  the  following  macro  expects
       three arguments (radius x0 y0) and sets the modes that are inside the given circle to 1 and those outside
       to 0:

       INCIRCLE = CDIST EXCH DIV 1 LE : usage: r x y INCIRCLE to return 1 inside circle

       Note: Because geographic or time constants may be present in a macro, it is required  that  the  optional
       comment flag (:) must be followed by a space.

EXAMPLES

       To compute all distances to north pole:

              gmt grdmath -Rg -I1 0 90 SDIST = dist_to_NP.nc

       To take log10 of the average of 2 files, use

              gmt grdmath file1.nc file2.nc ADD 0.5 MUL LOG10 = file3.nc

       Given  the  file  ages.nc, which holds seafloor ages in m.y., use the relation depth(in m) = 2500 + 350 *
       sqrt (age) to estimate normal seafloor depths:

              gmt grdmath ages.nc SQRT 350 MUL 2500 ADD = depths.nc

       To find the angle a (in degrees) of the largest principal stress from the  stress  tensor  given  by  the
       three files s_xx.nc s_yy.nc, and s_xy.nc from the relation tan (2*a) = 2 * s_xy / (s_xx - s_yy), use

              gmt grdmath 2 s_xy.nc MUL s_xx.nc s_yy.nc SUB DIV ATAN 2 DIV = direction.nc

       To  calculate  the  fully  normalized spherical harmonic of degree 8 and order 4 on a 1 by 1 degree world
       map, using the real amplitude 0.4 and the imaginary amplitude 1.1:

              gmt grdmath -R0/360/-90/90 -I1 8 4 YML 1.1 MUL EXCH 0.4 MUL ADD = harm.nc

       To extract the locations of local maxima that exceed 100 mGal in the file faa.nc:

              gmt grdmath faa.nc DUP EXTREMA 2 EQ MUL DUP 100 GT MUL 0 NAN = z.nc
              gmt grd2xyz z.nc -s > max.xyz

       To demonstrate the use of named variables, consider this radial  wave  where  we  store  and  recall  the
       normalized radial arguments in radians:

              gmt grdmath -R0/10/0/10 -I0.25 5 5 CDIST 2 MUL PI MUL 5 DIV STO@r COS @r SIN MUL = wave.nc

REFERENCES

       Abramowitz,  M.,  and I. A. Stegun, 1964, Handbook of Mathematical Functions, Applied Mathematics Series,
       vol. 55, Dover, New York.

       Holmes, S. A., and W. E. Featherstone, 2002, A  unified  approach  to  the  Clenshaw  summation  and  the
       recursive  computation of very high degree and order normalised associated Legendre functions. Journal of
       Geodesy, 76, 279-299.

       Press, W. H., S. A. Teukolsky, W. T. Vetterling,  and  B.  P.  Flannery,  1992,  Numerical  Recipes,  2nd
       edition, Cambridge Univ., New York.

       Spanier, J., and K. B. Oldman, 1987, An Atlas of Functions, Hemisphere Publishing Corp.

SEE ALSO

       gmt, gmtmath, grd2xyz, grdedit, grdinfo, xyz2grd

       2015, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe