Provided by: gmt-common_5.2.1+dfsg-3build1_all bug

NAME

       grdmath - Reverse Polish Notation (RPN) calculator for grids (element by element)

SYNOPSIS

       grdmath [ min_area[/min_level/max_level][+ag|i|s |S][+r|l][ppercent] ] [ resolution[+] ] [
       increment ] [  ] [  ] [ region ] [ [level] ] [ -bi<binary> ] [ -di<nodata> ] [ -f<flags> ]
       [  -h<headers>  ]  [  -i<flags>  ]  [  -n<flags> ] [ -r ] [ -x[[-]n] ] operand [ operand ]
       OPERATOR [ operand ] OPERATOR ... = outgrdfile

       Note: No space is allowed between the option flag and the associated arguments.

DESCRIPTION

       grdmath will perform operations like add, subtract, multiply, and divide on  one  or  more
       grid  files or constants using Reverse Polish Notation (RPN) syntax (e.g., Hewlett-Packard
       calculator-style).  Arbitrarily complicated expressions may therefore  be  evaluated;  the
       final  result  is  written to an output grid file. Grid operations are element-by-element,
       not matrix manipulations. Some operators only require one operand (see below). If no  grid
       files  are used in the expression then options -R, -I must be set (and optionally -r). The
       expression = outgrdfile can occur as many times as the depth of the stack allows in  order
       to  save  intermediate  results.   Complicated  or frequently occurring expressions may be
       coded as a macro for future use or stored and recalled via named memory locations.

REQUIRED ARGUMENTS

       operand
              If operand can be opened as a file it will be read as a grid file.  If not a  file,
              it is interpreted as a numerical constant or a special symbol (see below).

       outgrdfile
              The name of a 2-D grid file that will hold the final result. (See GRID FILE FORMATS
              below).

OPTIONAL ARGUMENTS

       -Amin_area[/min_level/max_level][+ag|i|s|S][+r|l][+ppercent]
              Features with an area smaller than min_area in km^2 or of hierarchical  level  that
              is  lower  than  min_level or higher than max_level will not be plotted [Default is
              0/0/4 (all features)].  Level 2 (lakes)  contains  regular  lakes  and  wide  river
              bodies  which we normally include as lakes; append +r to just get river-lakes or +l
              to just get regular lakes.  By default (+ai) we select the ice  shelf  boundary  as
              the  coastline  for Antarctica; append +ag to instead select the ice grounding line
              as coastline.  For expert users who wish to print their  own  Antarctica  coastline
              and islands via psxy you can use +as to skip all GSHHG features below 60S or +aS to
              instead skip all features north of  60S.   Finally,  append  +ppercent  to  exclude
              polygons whose percentage area of the corresponding full-resolution feature is less
              than percent. See GSHHG INFORMATION below for more details. (-A is only relevant to
              the LDISTG operator)

       -Dresolution[+]
              Selects  the  resolution  of  the data set to use with the operator LDISTG ((f)ull,
              (h)igh, (i)ntermediate, (l)ow, and  (c)rude).  The  resolution  drops  off  by  80%
              between  data  sets  [Default  is  l].   Append  +  to automatically select a lower
              resolution should the one requested not be available [abort if not found].

       -Ixinc[unit][=|+][/yinc[unit][=|+]]
              x_inc [and optionally y_inc] is the  grid  spacing.  Optionally,  append  a  suffix
              modifier. Geographical (degrees) coordinates: Append m to indicate arc minutes or s
              to indicate arc seconds. If one of the units e,  f,  k,  M,  n  or  u  is  appended
              instead,  the  increment  is assumed to be given in meter, foot, km, Mile, nautical
              mile or US survey foot, respectively, and  will  be  converted  to  the  equivalent
              degrees  longitude  at the middle latitude of the region (the conversion depends on
              PROJ_ELLIPSOID). If /y_inc is given but set to 0 it will be reset equal  to  x_inc;
              otherwise  it  will  be  converted  to  degrees  latitude. All coordinates: If = is
              appended then the corresponding max x (east) or y (north) may be slightly  adjusted
              to  fit  exactly  the  given  increment  [by  default the increment may be adjusted
              slightly to fit the given domain]. Finally, instead of giving an increment you  may
              specify  the  number  of  nodes  desired  by  appending  +  to the supplied integer
              argument; the increment is then recalculated from  the  number  of  nodes  and  the
              domain.  The  resulting  increment  value  depends  on  whether you have selected a
              gridline-registered or pixel-registered grid;  see  App-file-formats  for  details.
              Note:  if -Rgrdfile is used then the grid spacing has already been initialized; use
              -I to override the values.

       -M     By default any derivatives calculated are in z_units/ x(or y)_units.  However,  the
              user  may choose this option to convert dx,dy in degrees of longitude,latitude into
              meters using a flat Earth approximation, so that gradients are in z_units/meter.

       -N     Turn off strict domain match checking when multiple grids are manipulated  [Default
              will  insist  that  each grid domain is within 1e-4 * grid_spacing of the domain of
              the first grid listed].

       -R[unit]xmin/xmax/ymin/ymax[r] (more ...)
              Specify the region of interest.

       -V[level] (more ...)
              Select verbosity level [c].

       -bi[ncols][t] (more ...)
              Select native binary input. The binary input option only applies to the data  files
              needed by operators LDIST, PDIST, and INSIDE.

       -dinodata (more ...)
              Replace input columns that equal nodata with NaN.

       -f[i|o]colinfo (more ...)
              Specify data types of input and/or output columns.

       -g[a]x|y|d|X|Y|D|[col]z[+|-]gap[u] (more ...)
              Determine data gaps and line breaks.

       -h[i|o][n][+c][+d][+rremark][+rtitle] (more ...)
              Skip or produce header record(s).

       -icols[l][sscale][ooffset][,...] (more ...)
              Select input columns (0 is first column).

       -n[b|c|l|n][+a][+bBC][+c][+tthreshold] (more ...)
              Select interpolation mode for grids.

       -r (more ...)
              Set pixel node registration [gridline]. Only used with -R -I.

       -x[[-]n] (more ...)
              Limit number of cores used in multi-threaded algorithms (OpenMP required).

       -^ or just -
              Print a short message about the syntax of the command, then exits (NOTE: on Windows
              use just -).

       -+ or just +
              Print  an  extensive  usage  (help)  message,  including  the  explanation  of  any
              module-specific option (but not the GMT common options), then exits.

       -? or no arguments
              Print  a  complete usage (help) message, including the explanation of options, then
              exits.

       --version
              Print GMT version and exit.

       --show-datadir
              Print full path to GMT share directory and exit.

OPERATORS

       Choose among the following 169 operators. "args"  are  the  number  of  input  and  output
       arguments.

                             ┌──────────┬──────┬──────────────────────────┐
                             │Operator  │ args │ Returns                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │ABS       │ 1 1  │ abs (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACOS      │ 1 1  │ acos (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACOSH     │ 1 1  │ acosh (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACOT      │ 1 1  │ acot (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACSC      │ 1 1  │ acsc (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ADD       │ 2 1  │ A + B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │AND       │ 2 1  │ B if A == NaN, else A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │ARC       │ 2 1  │ return  arc(A,B)  on  [0 │
                             │          │      │ pi]                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │ASEC      │ 1 1  │ asec (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ASIN      │ 1 1  │ asin (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ASINH     │ 1 1  │ asinh (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ATAN      │ 1 1  │ atan (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ATAN2     │ 2 1  │ atan2 (A, B)             │
                             ├──────────┼──────┼──────────────────────────┤
                             │ATANH     │ 1 1  │ atanh (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BCDF      │ 3 1  │ Binomial      cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for p = A, n = B, and  x │
                             │          │      │ = C                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │BPDF      │ 3 1  │ Binomial     probability │
                             │          │      │ density function for p = │
                             │          │      │ A, n = B, and x = C      │
                             ├──────────┼──────┼──────────────────────────┤
                             │BEI       │ 1 1  │ bei (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │BER       │ 1 1  │ ber (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITAND    │ 2 1  │ A   &   B  (bitwise  AND │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITLEFT   │ 2 1  │ A    <<    B    (bitwise │
                             │          │      │ left-shift operator)     │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITNOT    │ 1 1  │ ~A      (bitwise     NOT │
                             │          │      │ operator,  i.e.,  return │
                             │          │      │ two's complement)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITOR     │ 2 1  │ A   |   B   (bitwise  OR │
                             │          │      │ operator)                │
                             └──────────┴──────┴──────────────────────────┘

                             │BITRIGHT  │ 2 1  │ A    >>    B    (bitwise │
                             │          │      │ right-shift operator)    │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITTEST   │ 2 1  │ 1  if bit B of A is set, │
                             │          │      │ else  0  (bitwise   TEST │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITXOR    │ 2 1  │ A   ^   B  (bitwise  XOR │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │CAZ       │ 2 1  │ Cartesian  azimuth  from │
                             │          │      │ grid  nodes to stack x,y │
                             │          │      │ (i.e., A, B)             │
                             ├──────────┼──────┼──────────────────────────┤
                             │CBAZ      │ 2 1  │ Cartesian   back-azimuth │
                             │          │      │ from grid nodes to stack │
                             │          │      │ x,y (i.e., A, B)         │
                             ├──────────┼──────┼──────────────────────────┤
                             │CDIST     │ 2 1  │ Cartesian       distance │
                             │          │      │ between  grid  nodes and │
                             │          │      │ stack x,y (i.e., A, B)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CDIST2    │ 2 1  │ As  CDIST  but  only  to │
                             │          │      │ nodes that are != 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │CEIL      │ 1 1  │ ceil    (A)    (smallest │
                             │          │      │ integer >= A)            │
                             ├──────────┼──────┼──────────────────────────┤
                             │CHICRIT   │ 2 1  │ Chi-squared     critical │
                             │          │      │ value  for alpha = A and │
                             │          │      │ nu = B                   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CHICDF    │ 2 1  │ Chi-squared   cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for chi2 = A and nu = B  │
                             ├──────────┼──────┼──────────────────────────┤
                             │CHIPDF    │ 2 1  │ Chi-squared  probability │
                             │          │      │ density   function   for │
                             │          │      │ chi2 = A and nu = B      │
                             ├──────────┼──────┼──────────────────────────┤
                             │COMB      │ 2 1  │ Combinations n_C_r, with │
                             │          │      │ n = A and r = B          │
                             ├──────────┼──────┼──────────────────────────┤
                             │CORRCOEFF │ 2 1  │ Correlation  coefficient │
                             │          │      │ r(A, B)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │COS       │ 1 1  │ cos (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │COSD      │ 1 1  │ cos (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │COSH      │ 1 1  │ cosh (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │COT       │ 1 1  │ cot (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │COTD      │ 1 1  │ cot (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CSC       │ 1 1  │ csc (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CSCD      │ 1 1  │ csc (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CURV      │ 1 1  │ Curvature      of      A │
                             │          │      │ (Laplacian)              │
                             └──────────┴──────┴──────────────────────────┘

                             │D2DX2     │ 1 1  │ d^2(A)/dx^2          2nd │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │D2DY2     │ 1 1  │ d^2(A)/dy^2          2nd │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │D2DXY     │ 1 1  │ d^2(A)/dxdy          2nd │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │D2R       │ 1 1  │ Converts   Degrees    to │
                             │          │      │ Radians                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │DDX       │ 1 1  │ d(A)/dx    Central   1st │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │DDY       │ 1 1  │ d(A)/dy   Central    1st │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │DEG2KM    │ 1 1  │ Converts       Spherical │
                             │          │      │ Degrees to Kilometers    │
                             ├──────────┼──────┼──────────────────────────┤
                             │DENAN     │ 2 1  │ Replace NaNs in  A  with │
                             │          │      │ values from B            │
                             ├──────────┼──────┼──────────────────────────┤
                             │DILOG     │ 1 1  │ dilog (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │DIV       │ 2 1  │ A / B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │DUP       │ 1 2  │ Places duplicate of A on │
                             │          │      │ the stack                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ECDF      │ 2 1  │ Exponential   cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for x = A and lambda = B │
                             ├──────────┼──────┼──────────────────────────┤
                             │ECRIT     │ 2 1  │ Exponential distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A and lambda = B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │EPDF      │ 2 1  │ Exponential  probability │
                             │          │      │ density function for x = │
                             │          │      │ A and lambda = B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │ERF       │ 1 1  │ Error function erf (A)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │ERFC      │ 1 1  │ Complementary      Error │
                             │          │      │ function erfc (A)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │EQ        │ 2 1  │ 1 if A == B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │ERFINV    │ 1 1  │ Inverse  error  function │
                             │          │      │ of A                     │
                             ├──────────┼──────┼──────────────────────────┤
                             │EXCH      │ 2 2  │ Exchanges A and B on the │
                             │          │      │ stack                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │EXP       │ 1 1  │ exp (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │FACT      │ 1 1  │ A! (A factorial)         │
                             ├──────────┼──────┼──────────────────────────┤
                             │EXTREMA   │ 1 1  │ Local  Extrema: +2/-2 is │
                             │          │      │ max/min, +1/-1 is saddle │
                             │          │      │ with  max/min  in  x,  0 │
                             │          │      │ elsewhere                │
                             └──────────┴──────┴──────────────────────────┘

                             │FCDF      │ 3 1  │ F             cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for F = A, nu1 = B,  and │
                             │          │      │ nu2 = C                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │FCRIT     │ 3 1  │ F  distribution critical │
                             │          │      │ value for alpha = A, nu1 │
                             │          │      │ = B, and nu2 = C         │
                             ├──────────┼──────┼──────────────────────────┤
                             │FLIPLR    │ 1 1  │ Reverse  order of values │
                             │          │      │ in each row              │
                             ├──────────┼──────┼──────────────────────────┤
                             │FLIPUD    │ 1 1  │ Reverse order of  values │
                             │          │      │ in each column           │
                             ├──────────┼──────┼──────────────────────────┤
                             │FLOOR     │ 1 1  │ floor    (A)   (greatest │
                             │          │      │ integer <= A)            │
                             ├──────────┼──────┼──────────────────────────┤
                             │FMOD      │ 2 1  │ A % B  (remainder  after │
                             │          │      │ truncated division)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │FPDF      │ 3 1  │ F   probability  density │
                             │          │      │ function for F = A,  nu1 │
                             │          │      │ = B, and nu2 = C         │
                             ├──────────┼──────┼──────────────────────────┤
                             │GE        │ 2 1  │ 1 if A >= B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │GT        │ 2 1  │ 1 if A > B, else 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │HYPOT     │ 2 1  │ hypot (A, B) = sqrt (A*A │
                             │          │      │ + B*B)                   │
                             ├──────────┼──────┼──────────────────────────┤
                             │I0        │ 1 1  │ Modified Bessel function │
                             │          │      │ of A (1st kind, order 0) │
                             ├──────────┼──────┼──────────────────────────┤
                             │I1        │ 1 1  │ Modified Bessel function │
                             │          │      │ of A (1st kind, order 1) │
                             ├──────────┼──────┼──────────────────────────┤
                             │IFELSE    │ 3 1  │ B if A != 0, else C      │
                             ├──────────┼──────┼──────────────────────────┤
                             │IN        │ 2 1  │ Modified Bessel function │
                             │          │      │ of A (1st kind, order B) │
                             ├──────────┼──────┼──────────────────────────┤
                             │INRANGE   │ 3 1  │ 1 if B <= A <= C, else 0 │
                             ├──────────┼──────┼──────────────────────────┤
                             │INSIDE    │ 1 1  │ 1   when  inside  or  on │
                             │          │      │ polygon(s) in A, else 0  │
                             ├──────────┼──────┼──────────────────────────┤
                             │INV       │ 1 1  │ 1 / A                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │ISFINITE  │ 1 1  │ 1 if A is finite, else 0 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ISNAN     │ 1 1  │ 1 if A == NaN, else 0    │
                             ├──────────┼──────┼──────────────────────────┤
                             │J0        │ 1 1  │ Bessel  function  of   A │
                             │          │      │ (1st kind, order 0)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │J1        │ 1 1  │ Bessel   function  of  A │
                             │          │      │ (1st kind, order 1)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │JN        │ 2 1  │ Bessel  function  of   A │
                             │          │      │ (1st kind, order B)      │
                             └──────────┴──────┴──────────────────────────┘

                             │K0        │ 1 1  │ Modified Kelvin function │
                             │          │      │ of A (2nd kind, order 0) │
                             ├──────────┼──────┼──────────────────────────┤
                             │K1        │ 1 1  │ Modified Bessel function │
                             │          │      │ of A (2nd kind, order 1) │
                             ├──────────┼──────┼──────────────────────────┤
                             │KEI       │ 1 1  │ kei (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │KER       │ 1 1  │ ker (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │KM2DEG    │ 1 1  │ Converts  Kilometers  to │
                             │          │      │ Spherical Degrees        │
                             ├──────────┼──────┼──────────────────────────┤
                             │KN        │ 2 1  │ Modified Bessel function │
                             │          │      │ of A (2nd kind, order B) │
                             ├──────────┼──────┼──────────────────────────┤
                             │KURT      │ 1 1  │ Kurtosis of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │LCDF      │ 1 1  │ Laplace       cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for z = A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │LCRIT     │ 1 1  │ Laplace     distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │LDIST     │ 1 1  │ Compute minimum distance │
                             │          │      │ (in  km  if  -fg)   from │
                             │          │      │ lines  in  multi-segment │
                             │          │      │ ASCII file A             │
                             ├──────────┼──────┼──────────────────────────┤
                             │LDIST2    │ 2 1  │ As LDIST, from lines  in │
                             │          │      │ ASCII file B but only to │
                             │          │      │ nodes where A != 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │LDISTG    │ 0 1  │ As LDIST,  but  operates │
                             │          │      │ on   the  GSHHG  dataset │
                             │          │      │ (see    -A,    -D    for │
                             │          │      │ options).                │
                             ├──────────┼──────┼──────────────────────────┤
                             │LE        │ 2 1  │ 1 if A <= B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG       │ 1 1  │ log (A) (natural log)    │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG10     │ 1 1  │ log10 (A) (base 10)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG1P     │ 1 1  │ log  (1+A) (accurate for │
                             │          │      │ small A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG2      │ 1 1  │ log2 (A) (base 2)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │LMSSCL    │ 1 1  │ LMS scale estimate  (LMS │
                             │          │      │ STD) of A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOWER     │ 1 1  │ The   lowest   (minimum) │
                             │          │      │ value of A               │
                             ├──────────┼──────┼──────────────────────────┤
                             │LPDF      │ 1 1  │ Laplace      probability │
                             │          │      │ density function for z = │
                             │          │      │ A                        │
                             ├──────────┼──────┼──────────────────────────┤
                             │LRAND     │ 2 1  │ Laplace   random   noise │
                             │          │      │ with  mean  A  and  std. │
                             │          │      │ deviation B              │
                             └──────────┴──────┴──────────────────────────┘

                             │LT        │ 2 1  │ 1 if A < B, else 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MAD       │ 1 1  │ Median          Absolute │
                             │          │      │ Deviation (L1 STD) of A  │
                             ├──────────┼──────┼──────────────────────────┤
                             │MAX       │ 2 1  │ Maximum of A and B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MEAN      │ 1 1  │ Mean value of A          │
                             ├──────────┼──────┼──────────────────────────┤
                             │MED       │ 1 1  │ Median value of A        │
                             ├──────────┼──────┼──────────────────────────┤
                             │MIN       │ 2 1  │ Minimum of A and B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MOD       │ 2 1  │ A mod B (remainder after │
                             │          │      │ floored division)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │MODE      │ 1 1  │ Mode value (Least Median │
                             │          │      │ of Squares) of A         │
                             ├──────────┼──────┼──────────────────────────┤
                             │MUL       │ 2 1  │ A * B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │NAN       │ 2 1  │ NaN if A == B, else A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │NEG       │ 1 1  │ -A                       │
                             ├──────────┼──────┼──────────────────────────┤
                             │NEQ       │ 2 1  │ 1 if A != B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │NORM      │ 1 1  │ Normalize     (A)     so │
                             │          │      │ max(A)-min(A) = 1        │
                             ├──────────┼──────┼──────────────────────────┤
                             │NOT       │ 1 1  │ NaN if A == NaN, 1 if  A │
                             │          │      │ == 0, else 0             │
                             ├──────────┼──────┼──────────────────────────┤
                             │NRAND     │ 2 1  │ Normal,   random  values │
                             │          │      │ with  mean  A  and  std. │
                             │          │      │ deviation B              │
                             ├──────────┼──────┼──────────────────────────┤
                             │OR        │ 2 1  │ NaN if B == NaN, else A  │
                             ├──────────┼──────┼──────────────────────────┤
                             │PCDF      │ 2 1  │ Poisson       cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for x = A and lambda = B │
                             ├──────────┼──────┼──────────────────────────┤
                             │PDIST     │ 1 1  │ Compute minimum distance │
                             │          │      │ (in  km  if  -fg)   from │
                             │          │      │ points in ASCII file A   │
                             ├──────────┼──────┼──────────────────────────┤
                             │PDIST2    │ 2 1  │ As PDIST, from points in │
                             │          │      │ ASCII file B but only to │
                             │          │      │ nodes where A != 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │PERM      │ 2 1  │ Permutations n_P_r, with │
                             │          │      │ n = A and r = B          │
                             ├──────────┼──────┼──────────────────────────┤
                             │PLM       │ 3 1  │ Associated      Legendre │
                             │          │      │ polynomial P(A) degree B │
                             │          │      │ order C                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │PLMg      │ 3 1  │ Normalized    associated │
                             │          │      │ Legendre polynomial P(A) │
                             │          │      │ degree   B    order    C │
                             │          │      │ (geophysical convention) │
                             └──────────┴──────┴──────────────────────────┘

                             │POINT     │ 1 2  │ Compute  mean  x  and  y │
                             │          │      │ from ASCII  file  A  and │
                             │          │      │ place them on the stack  │
                             ├──────────┼──────┼──────────────────────────┤
                             │POP       │ 1 0  │ Delete  top element from │
                             │          │      │ the stack                │
                             ├──────────┼──────┼──────────────────────────┤
                             │POW       │ 2 1  │ A ^ B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │PPDF      │ 2 1  │ Poisson     distribution │
                             │          │      │ P(x,lambda),  with x = A │
                             │          │      │ and lambda = B           │
                             ├──────────┼──────┼──────────────────────────┤
                             │PQUANT    │ 2 1  │ The    B'th     Quantile │
                             │          │      │ (0-100%) of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │PSI       │ 1 1  │ Psi (or Digamma) of A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │PV        │ 3 1  │ Legendre  function Pv(A) │
                             │          │      │ of degree v = real(B)  + │
                             │          │      │ imag(C)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │QV        │ 3 1  │ Legendre  function Qv(A) │
                             │          │      │ of degree v = real(B)  + │
                             │          │      │ imag(C)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │R2        │ 2 1  │ R2 = A^2 + B^2           │
                             ├──────────┼──────┼──────────────────────────┤
                             │R2D       │ 1 1  │ Convert    Radians    to │
                             │          │      │ Degrees                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │RAND      │ 2 1  │ Uniform  random   values │
                             │          │      │ between A and B          │
                             ├──────────┼──────┼──────────────────────────┤
                             │RCDF      │ 1 1  │ Rayleigh      cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for z = A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │RCRIT     │ 1 1  │ Rayleigh    distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │RINT      │ 1 1  │ rint   (A)   (round   to │
                             │          │      │ integral  value  nearest │
                             │          │      │ to A)                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │RPDF      │ 1 1  │ Rayleigh     probability │
                             │          │      │ density function for z = │
                             │          │      │ A                        │
                             ├──────────┼──────┼──────────────────────────┤
                             │ROLL      │ 2 0  │ Cyclicly  shifts the top │
                             │          │      │ A  stack  items  by   an │
                             │          │      │ amount B                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ROTX      │ 2 1  │ Rotate    A    by    the │
                             │          │      │ (constant)  shift  B  in │
                             │          │      │ x-direction              │
                             ├──────────┼──────┼──────────────────────────┤
                             │ROTY      │ 2 1  │ Rotate    A    by    the │
                             │          │      │ (constant)  shift  B  in │
                             │          │      │ y-direction              │
                             └──────────┴──────┴──────────────────────────┘

                             │SDIST     │ 2 1  │ Spherical         (Great │
                             │          │      │ circle|geodesic)         │
                             │          │      │ distance (in km) between │
                             │          │      │ nodes and stack (A, B)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SDIST2    │ 2 1  │ As  SDIST  but  only  to │
                             │          │      │ nodes that are != 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │SAZ       │ 2 1  │ Spherical  azimuth  from │
                             │          │      │ grid nodes to stack lon, │
                             │          │      │ lat (i.e., A, B)         │
                             ├──────────┼──────┼──────────────────────────┤
                             │SBAZ      │ 2 1  │ Spherical   back-azimuth │
                             │          │      │ from grid nodes to stack │
                             │          │      │ lon, lat (i.e., A, B)    │
                             ├──────────┼──────┼──────────────────────────┤
                             │SEC       │ 1 1  │ sec (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SECD      │ 1 1  │ sec (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SIGN      │ 1 1  │ sign (+1 or -1) of A     │
                             ├──────────┼──────┼──────────────────────────┤
                             │SIN       │ 1 1  │ sin (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SINC      │ 1 1  │ sinc       (A)      (sin │
                             │          │      │ (pi*A)/(pi*A))           │
                             ├──────────┼──────┼──────────────────────────┤
                             │SIND      │ 1 1  │ sin (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SINH      │ 1 1  │ sinh (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │SKEW      │ 1 1  │ Skewness of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │SQR       │ 1 1  │ A^2                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │SQRT      │ 1 1  │ sqrt (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │STD       │ 1 1  │ Standard deviation of A  │
                             ├──────────┼──────┼──────────────────────────┤
                             │STEP      │ 1 1  │ Heaviside step function: │
                             │          │      │ H(A)                     │
                             ├──────────┼──────┼──────────────────────────┤
                             │STEPX     │ 1 1  │ Heaviside  step function │
                             │          │      │ in x: H(x-A)             │
                             ├──────────┼──────┼──────────────────────────┤
                             │STEPY     │ 1 1  │ Heaviside step  function │
                             │          │      │ in y: H(y-A)             │
                             ├──────────┼──────┼──────────────────────────┤
                             │SUB       │ 2 1  │ A - B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │SUM       │ 1 1  │ Sum of all values in A   │
                             ├──────────┼──────┼──────────────────────────┤
                             │TAN       │ 1 1  │ tan (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │TAND      │ 1 1  │ tan (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │TANH      │ 1 1  │ tanh (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │TAPER     │ 2 1  │ Unit             weights │
                             │          │      │ cosine-tapered  to  zero │
                             │          │      │ within  A and B of x and │
                             │          │      │ y grid margins           │
                             └──────────┴──────┴──────────────────────────┘

                             │TCDF      │ 2 1  │ Student's  t  cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for t = A, and nu = B    │
                             ├──────────┼──────┼──────────────────────────┤
                             │TCRIT     │ 2 1  │ Student's t distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A and nu = B           │
                             ├──────────┼──────┼──────────────────────────┤
                             │TN        │ 2 1  │ Chebyshev     polynomial │
                             │          │      │ Tn(-1<t<+1,n),  with t = │
                             │          │      │ A, and n = B             │
                             ├──────────┼──────┼──────────────────────────┤
                             │TPDF      │ 2 1  │ Student's t  probability │
                             │          │      │ density function for t = │
                             │          │      │ A, and nu = B            │
                             ├──────────┼──────┼──────────────────────────┤
                             │UPPER     │ 1 1  │ The  highest   (maximum) │
                             │          │      │ value of A               │
                             ├──────────┼──────┼──────────────────────────┤
                             │WCDF      │ 3 1  │ Weibull       cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for  x  =  A, scale = B, │
                             │          │      │ and shape = C            │
                             ├──────────┼──────┼──────────────────────────┤
                             │WCRIT     │ 3 1  │ Weibull     distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ =  A,  scale  =  B,  and │
                             │          │      │ shape = C                │
                             ├──────────┼──────┼──────────────────────────┤
                             │WPDF      │ 3 1  │ Weibull          density │
                             │          │      │ distribution             │
                             │          │      │ P(x,scale,shape), with x │
                             │          │      │ =  A,  scale  =  B,  and │
                             │          │      │ shape = C                │
                             ├──────────┼──────┼──────────────────────────┤
                             │WRAP      │ 1 1  │ wrap  A  in radians onto │
                             │          │      │ [-pi,pi]                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │XOR       │ 2 1  │ 0 if A == NaN and  B  == │
                             │          │      │ NaN,  NaN  if  B == NaN, │
                             │          │      │ else A                   │
                             ├──────────┼──────┼──────────────────────────┤
                             │Y0        │ 1 1  │ Bessel  function  of   A │
                             │          │      │ (2nd kind, order 0)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │Y1        │ 1 1  │ Bessel   function  of  A │
                             │          │      │ (2nd kind, order 1)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │YLM       │ 2 2  │ Re        and         Im │
                             │          │      │ orthonormalized          │
                             │          │      │ spherical      harmonics │
                             │          │      │ degree A order B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │YLMg      │ 2 2  │ Cos  and  Sin normalized │
                             │          │      │ spherical      harmonics │
                             │          │      │ degree    A    order   B │
                             │          │      │ (geophysical convention) │
                             ├──────────┼──────┼──────────────────────────┤
                             │YN        │ 2 1  │ Bessel  function  of   A │
                             │          │      │ (2nd kind, order B)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │ZCDF      │ 1 1  │ Normal        cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for z = A                │
                             └──────────┴──────┴──────────────────────────┘

                             │ZPDF      │ 1 1  │ Normal       probability │
                             │          │      │ density function for z = │
                             │          │      │ A                        │
                             ├──────────┼──────┼──────────────────────────┤
                             │ZCRIT     │ 1 1  │ Normal      distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A                      │
                             └──────────┴──────┴──────────────────────────┘

SYMBOLS

       The following symbols have special meaning:

                              ┌───────┬──────────────────────────────────┐
                              │PI     │ 3.1415926...                     │
                              ├───────┼──────────────────────────────────┤
                              │E      │ 2.7182818...                     │
                              ├───────┼──────────────────────────────────┤
                              │EULER  │ 0.5772156...                     │
                              ├───────┼──────────────────────────────────┤
                              │EPS_F  │ 1.192092896e-07          (single │
                              │       │ precision epsilon                │
                              ├───────┼──────────────────────────────────┤
                              │XMIN   │ Minimum x value                  │
                              ├───────┼──────────────────────────────────┤
                              │XMAX   │ Maximum x value                  │
                              ├───────┼──────────────────────────────────┤
                              │XRANGE │ Range of x values                │
                              ├───────┼──────────────────────────────────┤
                              │XINC   │ x increment                      │
                              ├───────┼──────────────────────────────────┤
                              │NX     │ The number of x nodes            │
                              ├───────┼──────────────────────────────────┤
                              │YMIN   │ Minimum y value                  │
                              ├───────┼──────────────────────────────────┤
                              │YMAX   │ Maximum y value                  │
                              ├───────┼──────────────────────────────────┤
                              │YRANGE │ Range of y values                │
                              ├───────┼──────────────────────────────────┤
                              │YINC   │ y increment                      │
                              ├───────┼──────────────────────────────────┤
                              │NY     │ The number of y nodes            │
                              ├───────┼──────────────────────────────────┤
                              │X      │ Grid with x-coordinates          │
                              ├───────┼──────────────────────────────────┤
                              │Y      │ Grid with y-coordinates          │
                              ├───────┼──────────────────────────────────┤
                              │XNORM  │ Grid with normalized [-1 to  +1] │
                              │       │ x-coordinates                    │
                              ├───────┼──────────────────────────────────┤
                              │YNORM  │ Grid  with normalized [-1 to +1] │
                              │       │ y-coordinates                    │
                              ├───────┼──────────────────────────────────┤
                              │XCOL   │ Grid with column numbers  0,  1, │
                              │       │ ..., NX-1                        │
                              ├───────┼──────────────────────────────────┤
                              │YROW   │ Grid with row numbers 0, 1, ..., │
                              │       │ NY-1                             │
                              └───────┴──────────────────────────────────┘

NOTES ON OPERATORS

       1.  The operator SDIST calculates spherical distances in km between the (lon,  lat)  point
           on  the  stack  and all node positions in the grid. The grid domain and the (lon, lat)
           point are expected to be in degrees.  Similarly, the SAZ and SBAZ operators  calculate
           spherical  azimuth and back-azimuths in degrees, respectively. The operators LDIST and
           PDIST compute spherical distances in km if -fg is set or  implied,  else  they  return
           Cartesian distances. Note: If the current PROJ_ELLIPSOID is ellipsoidal then geodesics
           are used in calculations of distances, which can be slow.  You can  trade  speed  with
           accuracy by changing the algorithm used to compute the geodesic (see PROJ_GEODESIC).

           The  operator LDISTG is a version of LDIST that operates on the GSHHG data. Instead of
           reading an ASCII file, it directly accesses one of the GSHHG data sets  as  determined
           by the -D and -A options.

       2.  The  operator  POINT  reads  a  ASCII table, computes the mean x and mean y values and
           places these on the stack.  If geographic data then we use  the  mean  3-D  vector  to
           determine the mean location.

       3.  The operator PLM calculates the associated Legendre polynomial of degree L and order M
           (0 <= M <= L), and its argument is the sine of the latitude. PLM is not normalized and
           includes  the Condon-Shortley phase (-1)^M. PLMg is normalized in the way that is most
           commonly used in geophysics. The C-S phase can be added by using -M as argument.   PLM
           will  overflow  at higher degrees, whereas PLMg is stable until ultra high degrees (at
           least 3000).

       4.  The operators YLM and YLMg calculate normalized spherical harmonics for degree  L  and
           order  M  (0  <=  M  <=  L)  for  all positions in the grid, which is assumed to be in
           degrees. YLM and YLMg return  two  grids,  the  real  (cosine)  and  imaginary  (sine)
           component  of  the  complex spherical harmonic. Use the POP operator (and EXCH) to get
           rid of one of them, or save both by giving two consecutive = file.nc calls.

           The orthonormalized complex harmonics YLM  are  most  commonly  used  in  physics  and
           seismology.  The  square  of YLM integrates to 1 over a sphere. In geophysics, YLMg is
           normalized  to  produce  unit  power  when  averaging  the  cosine  and   sine   terms
           (separately!)  over  a  sphere  (i.e.,  their  squares  each  integrate  to 4 pi). The
           Condon-Shortley phase (-1)^M is not included in YLM or YLMg, but it can  be  added  by
           using -M as argument.

       5.  All  the  derivatives  are  based on central finite differences, with natural boundary
           conditions.

       6.  Files that have the same names as some operators, e.g., ADD, SIGN, =, etc.  should  be
           identified by prepending the current directory (i.e., ./LOG).

       7.  Piping of files is not allowed.

       8.  The stack depth limit is hard-wired to 100.

       9.  All  functions  expecting  a  positive  radius  (e.g.,  LOG, KEI, etc.) are passed the
           absolute value of their argument. (9) The bitwise operators (BITAND, BITLEFT,  BITNOT,
           BITOR,  BITRIGHT,  BITTEST,  and  BITXOR)  convert a grid's single precision values to
           unsigned 32-bit ints to perform the  bitwise  operations.  Consequently,  the  largest
           whole  integer  value  that  can  be stored in a float grid is 2^24 or 16,777,216. Any
           higher result will be masked to fit in the lower 24 bits.  Thus,  bit  operations  are
           effectively  limited  to  24  bit.   All  bitwise  operators  return  NaN if given NaN
           arguments or bit-settings <= 0.

       10. When OpenMP support is compiled in, a few operators will take advantage of the ability
           to  spread  the  load  onto several cores.  At present, the list of such operators is:
           LDIST.

GRID VALUES PRECISION

       Regardless of the precision of the input data, GMT programs that create  grid  files  will
       internally hold the grids in 4-byte floating point arrays. This is done to conserve memory
       and furthermore most if not all real data  can  be  stored  using  4-byte  floating  point
       values.  Data  with  higher  precision  (i.e.,  double  precision  values)  will lose that
       precision once GMT operates on the grid  or  writes  out  new  grids.  To  limit  loss  of
       precision  when  processing  data you should always consider normalizing the data prior to
       processing.

GRID FILE FORMATS

       By default GMT writes out grid as single precision floats  in  a  COARDS-complaint  netCDF
       file  format.  However, GMT is able to produce grid files in many other commonly used grid
       file formats and also facilitates so called "packing" of grids, writing out floating point
       data as 1- or 2-byte integers. To specify the precision, scale and offset, the user should
       add the suffix =id[/scale/offset[/nan]], where id is a two-letter identifier of  the  grid
       type  and  precision,  and  scale  and  offset  are optional scale factor and offset to be
       applied to all grid values, and nan is the value used to indicate missing  data.  In  case
       the  two  characters  id  is  not  provided,  as in =/scale than a id=nf is assumed.  When
       reading grids, the format is generally automatically recognized. If not, the  same  suffix
       can  be added to input grid file names. See grdconvert and Section grid-file-format of the
       GMT Technical Reference and Cookbook for more information.

       When reading a netCDF file that contains multiple grids, GMT will read,  by  default,  the
       first  2-dimensional  grid  that  can  find in that file. To coax GMT into reading another
       multi-dimensional variable in the grid file, append  ?varname  to  the  file  name,  where
       varname  is the name of the variable. Note that you may need to escape the special meaning
       of ? in your shell program by putting a backslash in  front  of  it,  or  by  placing  the
       filename  and suffix between quotes or double quotes. The ?varname suffix can also be used
       for output grids to  specify  a  variable  name  different  from  the  default:  "z".  See
       grdconvert  and  Sections  modifiers-for-CF  and  grid-file-format  of  the  GMT Technical
       Reference and Cookbook for more information, particularly on how to read  splices  of  3-,
       4-, or 5-dimensional grids.

GEOGRAPHICAL AND TIME COORDINATES

       When  the  output  grid  type  is  netCDF,  the  coordinates  will be labeled "longitude",
       "latitude", or "time" based on the attributes of the input data or grid (if any) or on the
       -f  or  -R  options.  For  example,  both  -f0x  -f1t and -R90w/90e/0t/3t will result in a
       longitude/time grid. When the x, y, or z coordinate is time, it will be stored in the grid
       as relative time since epoch as specified by TIME_UNIT and TIME_EPOCH in the gmt.conf file
       or on the command line. In addition, the unit attribute of the time variable will indicate
       both this unit and epoch.

STORE, RECALL AND CLEAR

       You  may store intermediate calculations to a named variable that you may recall and place
       on the stack at a later time. This is useful if you need access  to  a  computed  quantity
       many  times  in  your  expression  as  it  will shorten the overall expression and improve
       readability. To save a result you use the special operator STO@label, where label  is  the
       name  you choose to give the quantity. To recall the stored result to the stack at a later
       time, use [RCL]@label, i.e., RCL is optional. To clear memory you may use CLR@label.  Note
       that STO and CLR leave the stack unchanged.

GSHHS INFORMATION

       The  coastline  database  is  GSHHG (formerly GSHHS) which is compiled from three sources:
       World Vector Shorelines (WVS), CIA World Data Bank II (WDBII), and Atlas of the Cryosphere
       (AC,  for  Antarctica  only).   Apart  from  Antarctica,  all level-1 polygons (ocean-land
       boundary) are derived from the more accurate WVS while all higher  level  polygons  (level
       2-4,           representing          land/lake,          lake/island-in-lake,          and
       island-in-lake/lake-in-island-in-lake boundaries) are taken from  WDBII.   The  Antarctica
       coastlines come in two flavors: ice-front or grounding line, selectable via the -A option.
       Much processing has taken place to convert WVS, WDBII, and AC data into  usable  form  for
       GMT:  assembling  closed  polygons  from  line  segments,  checking  for  duplicates,  and
       correcting for crossings between polygons.  The area of each polygon has  been  determined
       so that the user may choose not to draw features smaller than a minimum area (see -A); one
       may also limit the highest hierarchical level  of  polygons  to  be  included  (4  is  the
       maximum).  The 4 lower-resolution databases were derived from the full resolution database
       using the Douglas-Peucker line-simplification algorithm. The classification of rivers  and
       borders  follow that of the WDBII. See the GMT Cookbook and Technical Reference Appendix K
       for further details.

MACROS

       Users may save their favorite operator combinations as macros via the file  grdmath.macros
       in  their  current  or  user directory. The file may contain any number of macros (one per
       record); comment lines starting with # are skipped. The format for the macros  is  name  =
       arg1  arg2 ... arg2 : comment where name is how the macro will be used. When this operator
       appears on the command line we simply replace it with the listed argument list.  No  macro
       may call another macro. As an example, the following macro expects three arguments (radius
       x0 y0) and sets the modes that are inside the given circle to 1 and those outside to 0:

       INCIRCLE = CDIST EXCH DIV 1 LE : usage: r x y INCIRCLE to return 1 inside circle

       Note: Because geographic or time constants may be present in a macro, it is required  that
       the optional comment flag (:) must be followed by a space.

EXAMPLES

       To compute all distances to north pole:

              gmt grdmath -Rg -I1 0 90 SDIST = dist_to_NP.nc

       To take log10 of the average of 2 files, use

              gmt grdmath file1.nc file2.nc ADD 0.5 MUL LOG10 = file3.nc

       Given  the file ages.nc, which holds seafloor ages in m.y., use the relation depth(in m) =
       2500 + 350 * sqrt (age) to estimate normal seafloor depths:

              gmt grdmath ages.nc SQRT 350 MUL 2500 ADD = depths.nc

       To find the angle a (in degrees) of the largest principal stress from  the  stress  tensor
       given  by  the  three files s_xx.nc s_yy.nc, and s_xy.nc from the relation tan (2*a) = 2 *
       s_xy / (s_xx - s_yy), use

              gmt grdmath 2 s_xy.nc MUL s_xx.nc s_yy.nc SUB DIV ATAN 2 DIV = direction.nc

       To calculate the fully normalized spherical harmonic of degree 8 and order 4 on a 1  by  1
       degree world map, using the real amplitude 0.4 and the imaginary amplitude 1.1:

              gmt grdmath -R0/360/-90/90 -I1 8 4 YML 1.1 MUL EXCH 0.4 MUL ADD = harm.nc

       To extract the locations of local maxima that exceed 100 mGal in the file faa.nc:

              gmt grdmath faa.nc DUP EXTREMA 2 EQ MUL DUP 100 GT MUL 0 NAN = z.nc
              gmt grd2xyz z.nc -s > max.xyz

       To  demonstrate  the  use of named variables, consider this radial wave where we store and
       recall the normalized radial arguments in radians:

              gmt grdmath -R0/10/0/10 -I0.25 5 5 CDIST 2 MUL PI MUL 5 DIV STO@r COS @r SIN MUL = wave.nc

REFERENCES

       Abramowitz, M., and I. A.  Stegun,  1964,  Handbook  of  Mathematical  Functions,  Applied
       Mathematics Series, vol. 55, Dover, New York.

       Holmes,  S. A., and W. E. Featherstone, 2002, A unified approach to the Clenshaw summation
       and the recursive computation of very high degree and order normalised associated Legendre
       functions. Journal of Geodesy, 76, 279-299.

       Press,  W.  H.,  S.  A.  Teukolsky,  W. T. Vetterling, and B. P. Flannery, 1992, Numerical
       Recipes, 2nd edition, Cambridge Univ., New York.

       Spanier, J., and K. B. Oldman, 1987, An Atlas of Functions, Hemisphere Publishing Corp.

SEE ALSO

       gmt, gmtmath, grd2xyz, grdedit, grdinfo, xyz2grd

COPYRIGHT

       2015, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe