xenial (1) t.rast.aggregate.1grass.gz

Provided by: grass-doc_7.0.3-1build1_all bug

NAME

       t.rast.aggregate   -  Aggregates  temporally  the  maps  of a space time raster dataset by a user defined
       granularity.

KEYWORDS

       temporal, aggregation, raster, time

SYNOPSIS

       t.rast.aggregate
       t.rast.aggregate --help
       t.rast.aggregate  [-ns]   input=name   output=name   basename=string   granularity=string   method=string
       [offset=integer]     [nprocs=integer]    [sampling=name[,name,...]]    [where=sql_query]    [--overwrite]
       [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -n
           Register Null maps

       -s
           Use start time - truncated according to granularity - as suffix (overrides offset option)

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       output=name [required]
           Name of the output space time raster dataset

       basename=string [required]
           Basename of the new generated output maps
           Either a numerical suffix or the start time (s-flag) separated by an underscore will be  attached  to
           create a unique identifier

       granularity=string [required]
           Aggregation  granularity,  format  absolute  time  "x  years,  x  months, x weeks, x days, x hours, x
           minutes, x seconds" or an integer value for relative time

       method=string [required]
           Aggregate operation to be performed on the raster maps
           Options: average, count, median, mode, minimum, min_raster, maximum, max_raster, stddev, range,  sum,
           variance, diversity, slope, offset, detcoeff, quart1, quart3, perc90, quantile, skewness, kurtosis
           Default: average

       offset=integer
           Offset  that  is used to create the output map ids, output map id is generated as: basename_ (count +
           offset)
           Default: 0

       nprocs=integer
           Number of r.series processes to run in parallel
           Default: 1

       sampling=name[,name,...]
           The method to be used for sampling the input dataset
           Options: equal, overlaps, overlapped, starts, started, finishes, finished, during, contains
           Default: contains

       where=sql_query
           WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework
           Example: start_time > ’2001-01-01 12:30:00’

DESCRIPTION

       t.rast.aggregate temporally aggregates space time raster datasets by  a  specific  temporal  granularity.
       This module support absolute and relative time. The temporal granularity of absolute time can be seconds,
       minutes, hours, days, weeks, months or years. Mixing of granularities eg. "1 year, 3 months  5  days"  is
       not supported. In case of relative time the temporal unit of the input space time raster dataset is used.
       The granularity must be specified with an integer value.

       This module is sensitive to the current region and  mask  settings,  hence  spatial  extent  and  spatial
       resolution.  In  case  the  registered  raster maps of the input space time raster dataset have different
       spatial resolutions, the  default  nearest  neighbor  resampling  method  is  used  for  runtime  spatial
       aggregation.

NOTES

       The raster module r.series is used internally. Hence all aggregate methods of r.series are supported. See
       the r.series manual page for details.

       This module will shift the start date for each aggregation process depending  on  the  provided  temporal
       granularity. The following shifts will performed:

           •   granularity  years: will start at the first of January, hence 14-08-2012 00:01:30 will be shifted
               to 01-01-2012 00:00:00

           •   granularity months: will start at the first day of a month, hence 14-08-2012 will be  shifted  to
               01-08-2012 00:00:00

           •   granularity weeks: will start at the first day of a week (Monday), hence 14-08-2012 01:30:30 will
               be shifted to 13-08-2012 01:00:00

           •   granularity days: will start at the first hour of  a  day,  hence  14-08-2012  00:01:30  will  be
               shifted to 14-08-2012 00:00:00

           •   granularity  hours:  will  start at the first minute of a hour, hence 14-08-2012 01:30:30 will be
               shifted to 14-08-2012 01:00:00

           •   granularity minutes: will start at the first second of a minute, hence 14-08-2012  01:30:30  will
               be shifted to 14-08-2012 01:30:00

       The specification of the temporal relation between the aggregation intervals and the raster map layers is
       always formulated from the aggregation interval  viewpoint.  Hence,  the  relation  contains  has  to  be
       specified to aggregate map layer that are temporally located in an aggregation interval.

       Parallel  processing  is  supported  in  case  that  more  than one interval is available for aggregation
       computation. Internally several r.series modules will be started, depending on the  number  of  specified
       parallel processes (nprocs) and the number of intervals to aggregate.

       The  flag  -s  allows  storing a date as map name suffix rather than using consecutive numbering. See the
       examples below for details.

EXAMPLES

   Aggregation of monthly data into yearly data
       In this example the user is going to aggregate monthly data into yearly data, running:
       t.rast.aggregate input=tempmean_monthly output=tempmean_yearly \
                        basename=tempmean_year \
                        granularity="1 years" method=average
       t.support input=tempmean_yearly \
                 title="Yearly precipitation" \
                 description="Aggregated precipitation dataset with yearly resolution"
       t.info tempmean_yearly
        +-------------------- Space Time Raster Dataset -----------------------------+
        |                                                                            |
        +-------------------- Basic information -------------------------------------+
        | Id: ........................ tempmean_yearly@climate_2000_2012
        | Name: ...................... tempmean_yearly
        | Mapset: .................... climate_2000_2012
        | Creator: ................... lucadelu
        | Temporal type: ............. absolute
        | Creation time: ............. 2014-11-27 10:25:21.243319
        | Modification time:.......... 2014-11-27 10:25:21.862136
        | Semantic type:.............. mean
        +-------------------- Absolute time -----------------------------------------+
        | Start time:................. 2009-01-01 00:00:00
        | End time:................... 2013-01-01 00:00:00
        | Granularity:................ 1 year
        | Temporal type of maps:...... interval
        +-------------------- Spatial extent ----------------------------------------+
        | North:...................... 320000.0
        | South:...................... 10000.0
        | East:.. .................... 935000.0
        | West:....................... 120000.0
        | Top:........................ 0.0
        | Bottom:..................... 0.0
        +-------------------- Metadata information ----------------------------------+
        | Raster register table:...... raster_map_register_514082e62e864522a13c8123d1949dea
        | North-South resolution min:. 500.0
        | North-South resolution max:. 500.0
        | East-west resolution min:... 500.0
        | East-west resolution max:... 500.0
        | Minimum value min:.......... 7.370747
        | Minimum value max:.......... 8.81603
        | Maximum value min:.......... 17.111387
        | Maximum value max:.......... 17.915511
        | Aggregation type:........... average
        | Number of registered maps:.. 4
        |
        | Title: Yearly precipitation
        | Monthly precipitation
        | Description: Aggregated precipitation dataset with yearly resolution
        | Dataset with monthly precipitation
        | Command history:
        | # 2014-11-27 10:25:21
        | t.rast.aggregate input="tempmean_monthly"
        |     output="tempmean_yearly" basename="tempmean_year" granularity="1 years"
        |     method="average"
        |
        | # 2014-11-27 10:26:21
        | t.support input=tempmean_yearly \
        |        title="Yearly precipitation" \
        |        description="Aggregated precipitation dataset with yearly resolution"
        +----------------------------------------------------------------------------+

   Different aggregations and map name suffix variants
       Examples of resulting naming schemes for different aggregations when using the -s flag:

   Weekly aggregation
       t.rast.aggregate input=daily_temp output=weekly_avg_temp \
         basename=weekly_avg_temp method=average granularity="1 weeks"
       t.rast.list weekly_avg_temp
       name|mapset|start_time|end_time
       weekly_avg_temp_2003_01|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
       weekly_avg_temp_2003_02|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
       weekly_avg_temp_2003_03|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
       weekly_avg_temp_2003_04|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
       weekly_avg_temp_2003_05|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
       weekly_avg_temp_2003_06|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
       weekly_avg_temp_2003_07|climate|2003-02-14 00:00:00|2003-02-21 00:00:00
       Variant with -s flag:
       t.rast.aggregate -s input=daily_temp output=weekly_avg_temp \
         basename=weekly_avg_temp method=average granularity="1 weeks"
       t.rast.list weekly_avg_temp
       name|mapset|start_time|end_time
       weekly_avg_temp_2003_01_03|climate|2003-01-03 00:00:00|2003-01-10 00:00:00
       weekly_avg_temp_2003_01_10|climate|2003-01-10 00:00:00|2003-01-17 00:00:00
       weekly_avg_temp_2003_01_17|climate|2003-01-17 00:00:00|2003-01-24 00:00:00
       weekly_avg_temp_2003_01_24|climate|2003-01-24 00:00:00|2003-01-31 00:00:00
       weekly_avg_temp_2003_01_31|climate|2003-01-31 00:00:00|2003-02-07 00:00:00
       weekly_avg_temp_2003_02_07|climate|2003-02-07 00:00:00|2003-02-14 00:00:00
       weekly_avg_temp_2003_02_14|climate|2003-02-14 00:00:00|2003-02-21 00:00:00

   Monthly aggregation
       t.rast.aggregate -s input=daily_temp output=monthly_avg_temp \
       basename=monthly_avg_temp method=average granularity="1 months"
       t.rast.list monthly_avg_temp
       name|mapset|start_time|end_time
       monthly_avg_temp_2003_01|climate|2003-01-01 00:00:00|2003-02-01 00:00:00
       monthly_avg_temp_2003_02|climate|2003-02-01 00:00:00|2003-03-01 00:00:00
       monthly_avg_temp_2003_03|climate|2003-03-01 00:00:00|2003-04-01 00:00:00
       monthly_avg_temp_2003_04|climate|2003-04-01 00:00:00|2003-05-01 00:00:00
       monthly_avg_temp_2003_05|climate|2003-05-01 00:00:00|2003-06-01 00:00:00
       monthly_avg_temp_2003_06|climate|2003-06-01 00:00:00|2003-07-01 00:00:00

   Yearly aggregation
       t.rast.aggregate -s input=daily_temp output=yearly_avg_temp \
         basename=yearly_avg_temp method=average granularity="1 years"
       t.rast.list yearly_avg_temp
       name|mapset|start_time|end_time
       yearly_avg_temp_2003|climate|2003-01-01 00:00:00|2004-01-01 00:00:00
       yearly_avg_temp_2004|climate|2004-01-01 00:00:00|2005-01-01 00:00:00

SEE ALSO

        t.rast.aggregate.ds, t.rast.extract, t.info, r.series, g.region, r.mask

       Temporal data processing Wiki

AUTHOR

       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

       Last changed: $Date: 2016-01-13 00:30:14 +0100 (Wed, 13 Jan 2016) $

       Main index | Temporal index | Topics index | Keywords index | Full index

       © 2003-2016 GRASS Development Team, GRASS GIS 7.0.3 Reference Manual