Provided by: grass-doc_7.0.3-1build1_all bug

NAME

       t.rast.series   -  Performs  different  aggregation  algorithms  from r.series on all or a
       subset of raster maps in a space time raster dataset.

KEYWORDS

       temporal, series, raster, time

SYNOPSIS

       t.rast.series
       t.rast.series --help
       t.rast.series     [-tn]     input=name     method=string       [order=string[,string,...]]
       [where=sql_query]  output=name  [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -t
           Do not assign the space time raster dataset start and end time to the output map

       -n
           Propagate NULLs

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       method=string [required]
           Aggregate operation to be performed on the raster maps
           Options:  average,  count,  median,  mode,  minimum,  min_raster, maximum, max_raster,
           stddev, range, sum, variance, diversity,  slope,  offset,  detcoeff,  quart1,  quart3,
           perc90, quantile, skewness, kurtosis
           Default: average

       order=string[,string,...]
           Sort the maps by category
           Options:   id,    name,    creator,    mapset,    creation_time,    modification_time,
           start_time,  end_time,  north,  south,  west,  east,  min,  max
           Default: start_time

       where=sql_query
           WHERE conditions of SQL statement without ’where’ keyword used  in  the  temporal  GIS
           framework
           Example: start_time > ’2001-01-01 12:30:00’

       output=name [required]
           Name for output raster map

DESCRIPTION

       t.rast.series  is a simple wrapper for the raster module r.series. It supports a subset of
       the aggregation methods of r.series.

       The input of this module is a single space time raster dataset, the  output  is  a  single
       raster  map  layer.  A subset of the input space time raster dataset can be selected using
       the where option. The sorting of the raster map layer can be set using the  order  option.
       Be  aware  that  the  order  of  the  maps  can  significantly influence the result of the
       aggregation (e.g.: slope). By default the maps are ordered by start_time.

EXAMPLE

       Estimate average temperature for the whole time series
       t.rast.series input=tempmean_monthly output=tempmean_general method=average
       Estimate average temperature for all January  maps  in  the  time  series,  the  so-called
       climatology
       t.rast.series input=tempmean_monthly \
           method=average output=tempmean_january \
           where="strftime(’%m’, start_time)=’01’"
       # equivalently, we can use
       t.rast.series input=tempmean_monthly \
           output=tempmean_january method=average \
           where="start_time = datetime(start_time, ’start of year’, ’0 month’)"
       # if we want also February and March averages
       t.rast.series input=tempmean_monthly \
           output=tempmean_february method=average \
           where="start_time = datetime(start_time, ’start of year’, ’1 month’)"
       t.rast.series input=tempmean_monthly \
           output=tempmean_march method=average \
           where="start_time = datetime(start_time, ’start of year’, ’2 month’)"
       Generalizing  a  bit,  we  can  estimate  monthly climatologies for all months by means of
       different methods
       for i in `seq -w 1 12` ; do
         for m in average stddev minimum maximum ; do
           t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
           where="strftime(’%m’, start_time)=’${i}’"
         done
       done

SEE ALSO

        r.series, t.create, t.info

       Temporal data processing Wiki

AUTHOR

       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

       Last changed: $Date: 2016-01-13 00:30:14 +0100 (Wed, 13 Jan 2016) $

       Main index | Temporal index | Topics index | Keywords index | Full index

       © 2003-2016 GRASS Development Team, GRASS GIS 7.0.3 Reference Manual