Provided by: manpages-dev_4.04-2_all bug


       chown, fchown, lchown, fchownat - change ownership of a file


       #include <unistd.h>

       int chown(const char *pathname, uid_t owner, gid_t group);
       int fchown(int fd, uid_t owner, gid_t group);
       int lchown(const char *pathname, uid_t owner, gid_t group);

       #include <fcntl.h>           /* Definition of AT_* constants */
       #include <unistd.h>

       int fchownat(int dirfd, const char *pathname,
                    uid_t owner, gid_t group, int flags);

   Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

       fchown(), lchown():
           || /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

           Since glibc 2.10:
               _XOPEN_SOURCE >= 700 || _POSIX_C_SOURCE >= 200809L
           Before glibc 2.10:


       These  system  calls  change  the  owner  and group of a file.  The chown(), fchown(), and
       lchown() system calls differ only in how the file is specified:

       * chown() changes the ownership of the file specified by pathname, which  is  dereferenced
         if it is a symbolic link.

       * fchown() changes the ownership of the file referred to by the open file descriptor fd.

       * lchown() is like chown(), but does not dereference symbolic links.

       Only  a privileged process (Linux: one with the CAP_CHOWN capability) may change the owner
       of a file.  The owner of a file may change the group of the file to  any  group  of  which
       that owner is a member.  A privileged process (Linux: with CAP_CHOWN) may change the group

       If the owner or group is specified as -1, then that ID is not changed.

       When the owner or group of an executable file are changed  by  an  unprivileged  user  the
       S_ISUID  and  S_ISGID  mode  bits  are  cleared.  POSIX does not specify whether this also
       should happen when root does the  chown();  the  Linux  behavior  depends  on  the  kernel
       version.   In  case of a non-group-executable file (i.e., one for which the S_IXGRP bit is
       not set) the S_ISGID bit indicates mandatory locking, and is not cleared by a chown().

       The fchownat() system call operates in exactly the same way as  chown(),  except  for  the
       differences described here.

       If  the  pathname  given  in  pathname is relative, then it is interpreted relative to the
       directory referred to by the file descriptor dirfd (rather than relative  to  the  current
       working directory of the calling process, as is done by chown() for a relative pathname).

       If  pathname  is  relative  and  dirfd  is  the  special  value AT_FDCWD, then pathname is
       interpreted relative to the  current  working  directory  of  the  calling  process  (like

       If pathname is absolute, then dirfd is ignored.

       The  flags  argument  is  a  bit mask created by ORing together 0 or more of the following

       AT_EMPTY_PATH (since Linux 2.6.39)
              If pathname is an empty string, operate on the file referred to by dirfd (which may
              have  been  obtained using the open(2) O_PATH flag).  In this case, dirfd can refer
              to any type of file, not just a directory.  If dirfd is AT_FDCWD, the call operates
              on  the current working directory.  This flag is Linux-specific; define _GNU_SOURCE
              to obtain its definition.

              If pathname is a symbolic link, do not dereference it: instead operate on the  link
              itself,  like  lchown().  (By default, fchownat() dereferences symbolic links, like

       See openat(2) for an explanation of the need for fchownat().


       On success, zero is returned.  On error, -1 is returned, and errno is set appropriately.


       Depending on the filesystem, errors other than those listed below can be returned.

       The more general errors for chown() are listed below.

       EACCES Search permission is  denied  on  a  component  of  the  path  prefix.   (See  also

       EFAULT pathname points outside your accessible address space.

       ELOOP  Too many symbolic links were encountered in resolving pathname.

              pathname is too long.

       ENOENT The file does not exist.

       ENOMEM Insufficient kernel memory was available.

              A component of the path prefix is not a directory.

       EPERM  The  calling  process  did  not have the required permissions (see above) to change
              owner and/or group.

       EROFS  The named file resides on a read-only filesystem.

       The general errors for fchown() are listed below:

       EBADF  The descriptor is not valid.

       EIO    A low-level I/O error occurred while modifying the inode.

       ENOENT See above.

       EPERM  See above.

       EROFS  See above.

       The same errors that occur for chown() can  also  occur  for  fchownat().   The  following
       additional errors can occur for fchownat():

       EBADF  dirfd is not a valid file descriptor.

       EINVAL Invalid flag specified in flags.

              pathname  is relative and dirfd is a file descriptor referring to a file other than
              a directory.


       fchownat() was added to Linux in kernel 2.6.16; library support  was  added  to  glibc  in
       version 2.4.


       chown(), fchown(), lchown(): 4.4BSD, SVr4, POSIX.1-2001, POSIX.1-2008.

       The  4.4BSD version can be used only by the superuser (that is, ordinary users cannot give
       away files).

       fchownat(): POSIX.1-2008.


   Ownership of new files
       When a new file is created (by, for example, open(2) or mkdir(2)), its owner is  made  the
       same  as the filesystem user ID of the creating process.  The group of the file depends on
       a range of factors, including the type of  filesystem,  the  options  used  to  mount  the
       filesystem,  and  whether  or  not  the  set-group-ID  mode  bit  is enabled on the parent
       directory.  If the filesystem supports the -o grpid (or,  synonymously  -o bsdgroups)  and
       -o nogrpid  (or,  synonymously  -o sysvgroups)  mount(8)  options,  then  the rules are as

       * If the filesystem is mounted with -o grpid, then the group of a new  file  is  made  the
         same as that of the parent directory.

       * If the filesystem is mounted with -o nogrpid and the set-group-ID bit is disabled on the
         parent directory, then the group of a new  file  is  made  the  same  as  the  process's
         filesystem GID.

       * If  the filesystem is mounted with -o nogrpid and the set-group-ID bit is enabled on the
         parent directory, then the group of a new file is made the same as that  of  the  parent

       As at Linux 2.6.25, the -o grpid and -o nogrpid mount options are supported by ext2, ext3,
       ext4, and XFS.  Filesystems that don't support these mount options follow  the  -o nogrpid

   Glibc notes
       On older kernels where fchownat() is unavailable, the glibc wrapper function falls back to
       the use of chown() and lchown().  When pathname is a relative pathname, glibc constructs a
       pathname  based  on  the  symbolic  link  in  /proc/self/fd  that corresponds to the dirfd

       The chown() semantics are deliberately violated on NFS filesystems which have UID  mapping
       enabled.   Additionally,  the semantics of all system calls which access the file contents
       are violated, because chown() may cause immediate access revocation on already open files.
       Client side caching may lead to a delay between the time where ownership have been changed
       to allow access for a user and the time where the file can actually  be  accessed  by  the
       user on other clients.

   Historical details
       The original Linux chown(), fchown(), and lchown() system calls supported only 16-bit user
       and group IDs.  Subsequently, Linux  2.4  added  chown32(),  fchown32(),  and  lchown32(),
       supporting  32-bit  IDs.   The  glibc  chown(),  fchown(),  and lchown() wrapper functions
       transparently deal with the variations across kernel versions.

       In versions of Linux prior to 2.1.81 (and distinct from 2.1.46), chown()  did  not  follow
       symbolic  links.   Since  Linux 2.1.81, chown() does follow symbolic links, and there is a
       new system call lchown() that does not follow symbolic links.  Since  Linux  2.1.86,  this
       new call (that has the same semantics as the old chown()) has got the same syscall number,
       and chown() got the newly introduced number.


       The following program changes the ownership of the file named in its  second  command-line
       argument  to the value specified in its first command-line argument.  The new owner can be
       specified either as a numeric user ID, or as a username (which is converted to a  user  ID
       by using getpwnam(3) to perform a lookup in the system password file).

   Program source
       #include <pwd.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <unistd.h>

       main(int argc, char *argv[])
           uid_t uid;
           struct passwd *pwd;
           char *endptr;

           if (argc != 3 || argv[1][0] == '\0') {
               fprintf(stderr, "%s <owner> <file>\n", argv[0]);

           uid = strtol(argv[1], &endptr, 10);  /* Allow a numeric string */

           if (*endptr != '\0') {         /* Was not pure numeric string */
               pwd = getpwnam(argv[1]);   /* Try getting UID for username */
               if (pwd == NULL) {

               uid = pwd->pw_uid;

           if (chown(argv[2], uid, -1) == -1) {



       chmod(2), flock(2), path_resolution(7), symlink(7)


       This  page  is  part of release 4.04 of the Linux man-pages project.  A description of the
       project, information about reporting bugs, and the latest version of  this  page,  can  be
       found at