Provided by: ocaml-nox_4.02.3-5ubuntu2_amd64 

NAME
Set - Sets over ordered types.
Module
Module Set
Documentation
Module Set
: sig end
Sets over ordered types.
This module implements the set data structure, given a total ordering function over the set elements. All
operations over sets are purely applicative (no side-effects). The implementation uses balanced binary
trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size
of the set, for instance.
The Make functor constructs implementations for any type, given a compare function. For instance: module
IntPairs = struct type t = int * int let compare (x0,y0) (x1,y1) = match Pervasives.compare x0 x1 with 0
-> Pervasives.compare y0 y1 | c -> c end module PairsSet = Set.Make(IntPairs) let m = PairsSet.(empty |>
add (2,3) |> add (5,7) |> add (11,13))
This creates a new module PairsSet , with a new type PairsSet.t of sets of int * int .
module type OrderedType = sig end
Input signature of the functor Set.Make .
module type S = sig end
Output signature of the functor Set.Make .
module Make : functor (Ord : OrderedType) -> sig end
Functor building an implementation of the set structure given a totally ordered type.
2016-02-07 source: Set(3o)