Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       chetf2_rook.f -

SYNOPSIS

   Functions/Subroutines
       subroutine chetf2_rook (UPLO, N, A, LDA, IPIV, INFO)
           CHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using
           the bounded Bunch-Kaufman ('rook') diagonal pivoting method (unblocked algorithm).

Function/Subroutine Documentation

   subroutine chetf2_rook (character UPLO, integer N, complex, dimension( lda, * ) A, integer
       LDA, integer, dimension( * ) IPIV, integer INFO)
       CHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the
       bounded Bunch-Kaufman ('rook') diagonal pivoting method (unblocked algorithm).

       Purpose:

            CHETF2_ROOK computes the factorization of a complex Hermitian matrix A
            using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:

               A = U*D*U**H  or  A = L*D*L**H

            where U (or L) is a product of permutation and unit upper (lower)
            triangular matrices, U**H is the conjugate transpose of U, and D is
            Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.

            This is the unblocked version of the algorithm, calling Level 2 BLAS.

       Parameters:
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     Hermitian matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
                     n-by-n upper triangular part of A contains the upper
                     triangular part of the matrix A, and the strictly lower
                     triangular part of A is not referenced.  If UPLO = 'L', the
                     leading n-by-n lower triangular part of A contains the lower
                     triangular part of the matrix A, and the strictly upper
                     triangular part of A is not referenced.

                     On exit, the block diagonal matrix D and the multipliers used
                     to obtain the factor U or L (see below for further details).

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     Details of the interchanges and the block structure of D.

                     If UPLO = 'U':
                        If IPIV(k) > 0, then rows and columns k and IPIV(k) were
                        interchanged and D(k,k) is a 1-by-1 diagonal block.

                        If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
                        columns k and -IPIV(k) were interchanged and rows and
                        columns k-1 and -IPIV(k-1) were inerchaged,
                        D(k-1:k,k-1:k) is a 2-by-2 diagonal block.

                     If UPLO = 'L':
                        If IPIV(k) > 0, then rows and columns k and IPIV(k)
                        were interchanged and D(k,k) is a 1-by-1 diagonal block.

                        If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
                        columns k and -IPIV(k) were interchanged and rows and
                        columns k+1 and -IPIV(k+1) were inerchaged,
                        D(k:k+1,k:k+1) is a 2-by-2 diagonal block.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -k, the k-th argument had an illegal value
                     > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
                          has been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if it
                          is used to solve a system of equations.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2013

       Further Details:

             If UPLO = 'U', then A = U*D*U**H, where
                U = P(n)*U(n)* ... *P(k)U(k)* ...,
             i.e., U is a product of terms P(k)*U(k), where k decreases from n to
             1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    v    0   )   k-s
                U(k) =  (   0    I    0   )   s
                        (   0    0    I   )   n-k
                           k-s   s   n-k

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
             If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
             and A(k,k), and v overwrites A(1:k-2,k-1:k).

             If UPLO = 'L', then A = L*D*L**H, where
                L = P(1)*L(1)* ... *P(k)*L(k)* ...,
             i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
             n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
             and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
             defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
             that if the diagonal block D(k) is of order s (s = 1 or 2), then

                        (   I    0     0   )  k-1
                L(k) =  (   0    I     0   )  s
                        (   0    v     I   )  n-k-s+1
                           k-1   s  n-k-s+1

             If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
             If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
             and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).

       Contributors:

             November 2013,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

             01-01-96 - Based on modifications by
               J. Lewis, Boeing Computer Services Company
               A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA

Author

       Generated automatically by Doxygen for LAPACK from the source code.