Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       clahrd.f -

SYNOPSIS

   Functions/Subroutines
       subroutine clahrd (N, K, NB, A, LDA, TAU, T, LDT, Y, LDY)
           CLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th
           subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to
           the unreduced part of A.

Function/Subroutine Documentation

   subroutine clahrd (integer N, integer K, integer NB, complex, dimension( lda, * ) A, integer LDA, complex,
       dimension( nb ) TAU, complex, dimension( ldt, nb ) T, integer LDT, complex, dimension( ldy, nb ) Y,
       integer LDY)
       CLAHRD reduces the first nb columns of a general rectangular matrix A so that elements below the k-th
       subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the
       unreduced part of A.

       Purpose:

            This routine is deprecated and has been replaced by routine CLAHR2.

            CLAHRD reduces the first NB columns of a complex general n-by-(n-k+1)
            matrix A so that elements below the k-th subdiagonal are zero. The
            reduction is performed by a unitary similarity transformation
            Q**H * A * Q. The routine returns the matrices V and T which determine
            Q as a block reflector I - V*T*V**H, and also the matrix Y = A * V * T.

       Parameters:
           N

                     N is INTEGER
                     The order of the matrix A.

           K

                     K is INTEGER
                     The offset for the reduction. Elements below the k-th
                     subdiagonal in the first NB columns are reduced to zero.

           NB

                     NB is INTEGER
                     The number of columns to be reduced.

           A

                     A is COMPLEX array, dimension (LDA,N-K+1)
                     On entry, the n-by-(n-k+1) general matrix A.
                     On exit, the elements on and above the k-th subdiagonal in
                     the first NB columns are overwritten with the corresponding
                     elements of the reduced matrix; the elements below the k-th
                     subdiagonal, with the array TAU, represent the matrix Q as a
                     product of elementary reflectors. The other columns of A are
                     unchanged. See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           TAU

                     TAU is COMPLEX array, dimension (NB)
                     The scalar factors of the elementary reflectors. See Further
                     Details.

           T

                     T is COMPLEX array, dimension (LDT,NB)
                     The upper triangular matrix T.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.  LDT >= NB.

           Y

                     Y is COMPLEX array, dimension (LDY,NB)
                     The n-by-nb matrix Y.

           LDY

                     LDY is INTEGER
                     The leading dimension of the array Y. LDY >= max(1,N).

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2015

       Further Details:

             The matrix Q is represented as a product of nb elementary reflectors

                Q = H(1) H(2) . . . H(nb).

             Each H(i) has the form

                H(i) = I - tau * v * v**H

             where tau is a complex scalar, and v is a complex vector with
             v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
             A(i+k+1:n,i), and tau in TAU(i).

             The elements of the vectors v together form the (n-k+1)-by-nb matrix
             V which is needed, with T and Y, to apply the transformation to the
             unreduced part of the matrix, using an update of the form:
             A := (I - V*T*V**H) * (A - Y*V**H).

             The contents of A on exit are illustrated by the following example
             with n = 7, k = 3 and nb = 2:

                ( a   h   a   a   a )
                ( a   h   a   a   a )
                ( a   h   a   a   a )
                ( h   h   a   a   a )
                ( v1  h   a   a   a )
                ( v1  v2  a   a   a )
                ( v1  v2  a   a   a )

             where a denotes an element of the original matrix A, h denotes a
             modified element of the upper Hessenberg matrix H, and vi denotes an
             element of the vector defining H(i).

Author

       Generated automatically by Doxygen for LAPACK from the source code.

Version 3.6.0                                    Sun Jan 17 2016                                     clahrd.f(3)