Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       cunmhr.f -

SYNOPSIS

   Functions/Subroutines
       subroutine cunmhr (SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
           CUNMHR

Function/Subroutine Documentation

   subroutine cunmhr (character SIDE, character TRANS, integer M, integer N, integer ILO, integer
       IHI, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex,
       dimension( ldc, * ) C, integer LDC, complex, dimension( * ) WORK, integer LWORK, integer
       INFO)
       CUNMHR

       Purpose:

            CUNMHR overwrites the general complex M-by-N matrix C with

                            SIDE = 'L'     SIDE = 'R'
            TRANS = 'N':      Q * C          C * Q
            TRANS = 'C':      Q**H * C       C * Q**H

            where Q is a complex unitary matrix of order nq, with nq = m if
            SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
            IHI-ILO elementary reflectors, as returned by CGEHRD:

            Q = H(ilo) H(ilo+1) . . . H(ihi-1).

       Parameters:
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**H from the Left;
                     = 'R': apply Q or Q**H from the Right.

           TRANS

                     TRANS is CHARACTER*1
                     = 'N': apply Q  (No transpose)
                     = 'C': apply Q**H (Conjugate transpose)

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           ILO

                     ILO is INTEGER

           IHI

                     IHI is INTEGER

                     ILO and IHI must have the same values as in the previous call
                     of CGEHRD. Q is equal to the unit matrix except in the
                     submatrix Q(ilo+1:ihi,ilo+1:ihi).
                     If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
                     ILO = 1 and IHI = 0, if M = 0;
                     if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
                     ILO = 1 and IHI = 0, if N = 0.

           A

                     A is COMPLEX array, dimension
                                          (LDA,M) if SIDE = 'L'
                                          (LDA,N) if SIDE = 'R'
                     The vectors which define the elementary reflectors, as
                     returned by CGEHRD.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.
                     LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.

           TAU

                     TAU is COMPLEX array, dimension
                                          (M-1) if SIDE = 'L'
                                          (N-1) if SIDE = 'R'
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by CGEHRD.

           C

                     C is COMPLEX array, dimension (LDC,N)
                     On entry, the M-by-N matrix C.
                     On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.
                     If SIDE = 'L', LWORK >= max(1,N);
                     if SIDE = 'R', LWORK >= max(1,M).
                     For optimum performance LWORK >= N*NB if SIDE = 'L', and
                     LWORK >= M*NB if SIDE = 'R', where NB is the optimal
                     blocksize.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

Author

       Generated automatically by Doxygen for LAPACK from the source code.