Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all
NAME
dgghrd.f -
SYNOPSIS
Functions/Subroutines subroutine dgghrd (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO) DGGHRD
Function/Subroutine Documentation
subroutine dgghrd (character COMPQ, character COMPZ, integer N, integer ILO, integer IHI, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( ldb, * ) B, integer LDB, double precision, dimension( ldq, * ) Q, integer LDQ, double precision, dimension( ldz, * ) Z, integer LDZ, integer INFO) DGGHRD Purpose: DGGHRD reduces a pair of real matrices (A,B) to generalized upper Hessenberg form using orthogonal transformations, where A is a general matrix and B is upper triangular. The form of the generalized eigenvalue problem is A*x = lambda*B*x, and B is typically made upper triangular by computing its QR factorization and moving the orthogonal matrix Q to the left side of the equation. This subroutine simultaneously reduces A to a Hessenberg matrix H: Q**T*A*Z = H and transforms B to another upper triangular matrix T: Q**T*B*Z = T in order to reduce the problem to its standard form H*y = lambda*T*y where y = Z**T*x. The orthogonal matrices Q and Z are determined as products of Givens rotations. They may either be formed explicitly, or they may be postmultiplied into input matrices Q1 and Z1, so that Q1 * A * Z1**T = (Q1*Q) * H * (Z1*Z)**T Q1 * B * Z1**T = (Q1*Q) * T * (Z1*Z)**T If Q1 is the orthogonal matrix from the QR factorization of B in the original equation A*x = lambda*B*x, then DGGHRD reduces the original problem to generalized Hessenberg form. Parameters: COMPQ COMPQ is CHARACTER*1 = 'N': do not compute Q; = 'I': Q is initialized to the unit matrix, and the orthogonal matrix Q is returned; = 'V': Q must contain an orthogonal matrix Q1 on entry, and the product Q1*Q is returned. COMPZ COMPZ is CHARACTER*1 = 'N': do not compute Z; = 'I': Z is initialized to the unit matrix, and the orthogonal matrix Z is returned; = 'V': Z must contain an orthogonal matrix Z1 on entry, and the product Z1*Z is returned. N N is INTEGER The order of the matrices A and B. N >= 0. ILO ILO is INTEGER IHI IHI is INTEGER ILO and IHI mark the rows and columns of A which are to be reduced. It is assumed that A is already upper triangular in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set by a previous call to DGGBAL; otherwise they should be set to 1 and N respectively. 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. A A is DOUBLE PRECISION array, dimension (LDA, N) On entry, the N-by-N general matrix to be reduced. On exit, the upper triangle and the first subdiagonal of A are overwritten with the upper Hessenberg matrix H, and the rest is set to zero. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). B B is DOUBLE PRECISION array, dimension (LDB, N) On entry, the N-by-N upper triangular matrix B. On exit, the upper triangular matrix T = Q**T B Z. The elements below the diagonal are set to zero. LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). Q Q is DOUBLE PRECISION array, dimension (LDQ, N) On entry, if COMPQ = 'V', the orthogonal matrix Q1, typically from the QR factorization of B. On exit, if COMPQ='I', the orthogonal matrix Q, and if COMPQ = 'V', the product Q1*Q. Not referenced if COMPQ='N'. LDQ LDQ is INTEGER The leading dimension of the array Q. LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. Z Z is DOUBLE PRECISION array, dimension (LDZ, N) On entry, if COMPZ = 'V', the orthogonal matrix Z1. On exit, if COMPZ='I', the orthogonal matrix Z, and if COMPZ = 'V', the product Z1*Z. Not referenced if COMPZ='N'. LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011 Further Details: This routine reduces A to Hessenberg and B to triangular form by an unblocked reduction, as described in _Matrix_Computations_, by Golub and Van Loan (Johns Hopkins Press.)
Author
Generated automatically by Doxygen for LAPACK from the source code.