Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       dlahrd.f -

SYNOPSIS

   Functions/Subroutines
       subroutine dlahrd (N, K, NB, A, LDA, TAU, T, LDT, Y, LDY)
           DLAHRD reduces the first nb columns of a general rectangular matrix A so that elements
           below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed
           to apply the transformation to the unreduced part of A.

Function/Subroutine Documentation

   subroutine dlahrd (integer N, integer K, integer NB, double precision, dimension( lda, * ) A,
       integer LDA, double precision, dimension( nb ) TAU, double precision, dimension( ldt, nb )
       T, integer LDT, double precision, dimension( ldy, nb ) Y, integer LDY)
       DLAHRD reduces the first nb columns of a general rectangular matrix A so that elements
       below the k-th subdiagonal are zero, and returns auxiliary matrices which are needed to
       apply the transformation to the unreduced part of A.

       Purpose:

            This routine is deprecated and has been replaced by routine DLAHR2.

            DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
            matrix A so that elements below the k-th subdiagonal are zero. The
            reduction is performed by an orthogonal similarity transformation
            Q**T * A * Q. The routine returns the matrices V and T which determine
            Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.

       Parameters:
           N

                     N is INTEGER
                     The order of the matrix A.

           K

                     K is INTEGER
                     The offset for the reduction. Elements below the k-th
                     subdiagonal in the first NB columns are reduced to zero.

           NB

                     NB is INTEGER
                     The number of columns to be reduced.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N-K+1)
                     On entry, the n-by-(n-k+1) general matrix A.
                     On exit, the elements on and above the k-th subdiagonal in
                     the first NB columns are overwritten with the corresponding
                     elements of the reduced matrix; the elements below the k-th
                     subdiagonal, with the array TAU, represent the matrix Q as a
                     product of elementary reflectors. The other columns of A are
                     unchanged. See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           TAU

                     TAU is DOUBLE PRECISION array, dimension (NB)
                     The scalar factors of the elementary reflectors. See Further
                     Details.

           T

                     T is DOUBLE PRECISION array, dimension (LDT,NB)
                     The upper triangular matrix T.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.  LDT >= NB.

           Y

                     Y is DOUBLE PRECISION array, dimension (LDY,NB)
                     The n-by-nb matrix Y.

           LDY

                     LDY is INTEGER
                     The leading dimension of the array Y. LDY >= N.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2015

       Further Details:

             The matrix Q is represented as a product of nb elementary reflectors

                Q = H(1) H(2) . . . H(nb).

             Each H(i) has the form

                H(i) = I - tau * v * v**T

             where tau is a real scalar, and v is a real vector with
             v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
             A(i+k+1:n,i), and tau in TAU(i).

             The elements of the vectors v together form the (n-k+1)-by-nb matrix
             V which is needed, with T and Y, to apply the transformation to the
             unreduced part of the matrix, using an update of the form:
             A := (I - V*T*V**T) * (A - Y*V**T).

             The contents of A on exit are illustrated by the following example
             with n = 7, k = 3 and nb = 2:

                ( a   h   a   a   a )
                ( a   h   a   a   a )
                ( a   h   a   a   a )
                ( h   h   a   a   a )
                ( v1  h   a   a   a )
                ( v1  v2  a   a   a )
                ( v1  v2  a   a   a )

             where a denotes an element of the original matrix A, h denotes a
             modified element of the upper Hessenberg matrix H, and vi denotes an
             element of the vector defining H(i).

Author

       Generated automatically by Doxygen for LAPACK from the source code.