Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       dlarfx.f -

SYNOPSIS

   Functions/Subroutines
       subroutine dlarfx (SIDE, M, N, V, TAU, C, LDC, WORK)
           DLARFX applies an elementary reflector to a general rectangular matrix, with loop
           unrolling when the reflector has order  10.

Function/Subroutine Documentation

   subroutine dlarfx (character SIDE, integer M, integer N, double precision, dimension( * ) V,
       double precision TAU, double precision, dimension( ldc, * ) C, integer LDC, double
       precision, dimension( * ) WORK)
       DLARFX applies an elementary reflector to a general rectangular matrix, with loop
       unrolling when the reflector has order ≤ 10.

       Purpose:

            DLARFX applies a real elementary reflector H to a real m by n
            matrix C, from either the left or the right. H is represented in the
            form

                  H = I - tau * v * v**T

            where tau is a real scalar and v is a real vector.

            If tau = 0, then H is taken to be the unit matrix

            This version uses inline code if H has order < 11.

       Parameters:
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': form  H * C
                     = 'R': form  C * H

           M

                     M is INTEGER
                     The number of rows of the matrix C.

           N

                     N is INTEGER
                     The number of columns of the matrix C.

           V

                     V is DOUBLE PRECISION array, dimension (M) if SIDE = 'L'
                                                or (N) if SIDE = 'R'
                     The vector v in the representation of H.

           TAU

                     TAU is DOUBLE PRECISION
                     The value tau in the representation of H.

           C

                     C is DOUBLE PRECISION array, dimension (LDC,N)
                     On entry, the m by n matrix C.
                     On exit, C is overwritten by the matrix H * C if SIDE = 'L',
                     or C * H if SIDE = 'R'.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDA >= (1,M).

           WORK

                     WORK is DOUBLE PRECISION array, dimension
                                 (N) if SIDE = 'L'
                                 or (M) if SIDE = 'R'
                     WORK is not referenced if H has order < 11.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           September 2012

Author

       Generated automatically by Doxygen for LAPACK from the source code.