Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       dsbgv.f -

SYNOPSIS

   Functions/Subroutines
       subroutine dsbgv (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, INFO)
           DSBGV

Function/Subroutine Documentation

   subroutine dsbgv (character JOBZ, character UPLO, integer N, integer KA, integer KB, double
       precision, dimension( ldab, * ) AB, integer LDAB, double precision, dimension( ldbb, * )
       BB, integer LDBB, double precision, dimension( * ) W, double precision, dimension( ldz, *
       ) Z, integer LDZ, double precision, dimension( * ) WORK, integer INFO)
       DSBGV

       Purpose:

            DSBGV computes all the eigenvalues, and optionally, the eigenvectors
            of a real generalized symmetric-definite banded eigenproblem, of
            the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric
            and banded, and B is also positive definite.

       Parameters:
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangles of A and B are stored;
                     = 'L':  Lower triangles of A and B are stored.

           N

                     N is INTEGER
                     The order of the matrices A and B.  N >= 0.

           KA

                     KA is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'. KA >= 0.

           KB

                     KB is INTEGER
                     The number of superdiagonals of the matrix B if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'. KB >= 0.

           AB

                     AB is DOUBLE PRECISION array, dimension (LDAB, N)
                     On entry, the upper or lower triangle of the symmetric band
                     matrix A, stored in the first ka+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).

                     On exit, the contents of AB are destroyed.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KA+1.

           BB

                     BB is DOUBLE PRECISION array, dimension (LDBB, N)
                     On entry, the upper or lower triangle of the symmetric band
                     matrix B, stored in the first kb+1 rows of the array.  The
                     j-th column of B is stored in the j-th column of the array BB
                     as follows:
                     if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
                     if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).

                     On exit, the factor S from the split Cholesky factorization
                     B = S**T*S, as returned by DPBSTF.

           LDBB

                     LDBB is INTEGER
                     The leading dimension of the array BB.  LDBB >= KB+1.

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           Z

                     Z is DOUBLE PRECISION array, dimension (LDZ, N)
                     If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
                     eigenvectors, with the i-th column of Z holding the
                     eigenvector associated with W(i). The eigenvectors are
                     normalized so that Z**T*B*Z = I.
                     If JOBZ = 'N', then Z is not referenced.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= N.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (3*N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, and i is:
                        <= N:  the algorithm failed to converge:
                               i off-diagonal elements of an intermediate
                               tridiagonal form did not converge to zero;
                        > N:   if INFO = N + i, for 1 <= i <= N, then DPBSTF
                               returned INFO = i: B is not positive definite.
                               The factorization of B could not be completed and
                               no eigenvalues or eigenvectors were computed.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2015

Author

       Generated automatically by Doxygen for LAPACK from the source code.