Provided by: manpages-dev_4.04-2_all bug


       pthread_cleanup_push,  pthread_cleanup_pop  -  push  and  pop thread cancellation clean-up


       #include <pthread.h>

       void pthread_cleanup_push(void (*routine)(void *),
                                 void *arg);
       void pthread_cleanup_pop(int execute);

       Compile and link with -pthread.


       These functions manipulate the calling  thread's  stack  of  thread-cancellation  clean-up
       handlers.   A  clean-up handler is a function that is automatically executed when a thread
       is canceled (or in various other circumstances described below); it  might,  for  example,
       unlock a mutex so that it becomes available to other threads in the process.

       The  pthread_cleanup_push()  function pushes routine onto the top of the stack of clean-up
       handlers.  When routine is later invoked, it will be given arg as its argument.

       The pthread_cleanup_pop() function removes the routine at the top of the stack of clean-up
       handlers, and optionally executes it if execute is nonzero.

       A  cancellation  clean-up  handler  is popped from the stack and executed in the following

       1. When a thread is canceled, all of the stacked clean-up handlers are popped and executed
          in the reverse of the order in which they were pushed onto the stack.

       2. When a thread terminates by calling pthread_exit(3), all clean-up handlers are executed
          as described in the preceding point.  (Clean-up handlers are not called if  the  thread
          terminates by performing a return from the thread start function.)

       3. When a thread calls pthread_cleanup_pop() with a nonzero execute argument, the top-most
          clean-up handler is popped and executed.

       POSIX.1 permits pthread_cleanup_push() and  pthread_cleanup_pop()  to  be  implemented  as
       macros  that  expand  to  text containing '{' and '}', respectively.  For this reason, the
       caller must ensure that calls to these functions are paired within the same function,  and
       at  the  same  lexical  nesting level.  (In other words, a clean-up handler is established
       only during the execution of a specified section of code.)

       Calling longjmp(3) (siglongjmp(3)) produces undefined results if any call has been made to
       pthread_cleanup_push()  or  pthread_cleanup_pop()  without  the  matching call of the pair
       since  the  jump  buffer  was  filled  by  setjmp(3)  (sigsetjmp(3)).   Likewise,  calling
       longjmp(3)  (siglongjmp(3))  from  inside  a  clean-up  handler produces undefined results
       unless the jump buffer was also filled by setjmp(3) (sigsetjmp(3)) inside the handler.


       These functions do not return a value.


       There are no errors.


       For an explanation of the terms used in this section, see attributes(7).

       │InterfaceAttributeValue   │
       │pthread_cleanup_push(), │ Thread safety │ MT-Safe │
       │pthread_cleanup_pop()   │               │         │


       POSIX.1-2001, POSIX.1-2008.


       On  Linux,  the pthread_cleanup_push() and pthread_cleanup_pop() functions are implemented
       as macros that expand to text containing '{'  and  '}',  respectively.   This  means  that
       variables  declared  within  the  scope of paired calls to these functions will be visible
       within only that scope.

       POSIX.1 says that the effect of using return, break,  continue,  or  goto  to  prematurely
       leave  a  block  bracketed  pthread_cleanup_push() and pthread_cleanup_pop() is undefined.
       Portable applications should avoid doing this.


       The program below provides a simple example of the use of the functions described in  this
       page.    The   program   creates   a   thread   that   executes   a   loop   bracketed  by
       pthread_cleanup_push() and pthread_cleanup_pop().  This loop increments a global variable,
       cnt,  once  each  second.  Depending on what command-line arguments are supplied, the main
       thread sends the other thread a cancellation request,  or  sets  a  global  variable  that
       causes the other thread to exit its loop and terminate normally (by doing a return).

       In  the following shell session, the main thread sends a cancellation request to the other

           $ ./a.out
           New thread started
           cnt = 0
           cnt = 1
           Canceling thread
           Called clean-up handler
           Thread was canceled; cnt = 0

       From the above, we see that the thread was canceled, and that  the  cancellation  clean-up
       handler was called and it reset the value of the global variable cnt to 0.

       In  the  next  run,  the  main  program sets a global variable that causes other thread to
       terminate normally:

           $ ./a.out x
           New thread started
           cnt = 0
           cnt = 1
           Thread terminated normally; cnt = 2

       From the above, we see that the clean-up handler was not executed (because cleanup_pop_arg
       was 0), and therefore the value of cnt was not reset.

       In  the  next run, the main program sets a global variable that causes the other thread to
       terminate normally, and supplies a nonzero value for cleanup_pop_arg:

           $ ./a.out x 1
           New thread started
           cnt = 0
           cnt = 1
           Called clean-up handler
           Thread terminated normally; cnt = 0

       In the above, we see that although the thread was not canceled, the clean-up  handler  was
       executed, because the argument given to pthread_cleanup_pop() was nonzero.

   Program source

       #include <pthread.h>
       #include <sys/types.h>
       #include <stdio.h>
       #include <stdlib.h>
       #include <unistd.h>
       #include <errno.h>

       #define handle_error_en(en, msg) \
               do { errno = en; perror(msg); exit(EXIT_FAILURE); } while (0)

       static int done = 0;
       static int cleanup_pop_arg = 0;
       static int cnt = 0;

       static void
       cleanup_handler(void *arg)
           printf("Called clean-up handler\n");
           cnt = 0;

       static void *
       thread_start(void *arg)
           time_t start, curr;

           printf("New thread started\n");

           pthread_cleanup_push(cleanup_handler, NULL);

           curr = start = time(NULL);

           while (!done) {
               pthread_testcancel();           /* A cancellation point */
               if (curr < time(NULL)) {
                   curr = time(NULL);
                   printf("cnt = %d\n", cnt);  /* A cancellation point */

           return NULL;

       main(int argc, char *argv[])
           pthread_t thr;
           int s;
           void *res;

           s = pthread_create(&thr, NULL, thread_start, NULL);
           if (s != 0)
               handle_error_en(s, "pthread_create");

           sleep(2);           /* Allow new thread to run a while */

           if (argc > 1) {
               if (argc > 2)
                   cleanup_pop_arg = atoi(argv[2]);
               done = 1;

           } else {
               printf("Canceling thread\n");
               s = pthread_cancel(thr);
               if (s != 0)
                   handle_error_en(s, "pthread_cancel");

           s = pthread_join(thr, &res);
           if (s != 0)
               handle_error_en(s, "pthread_join");

           if (res == PTHREAD_CANCELED)
               printf("Thread was canceled; cnt = %d\n", cnt);
               printf("Thread terminated normally; cnt = %d\n", cnt);


       pthread_cancel(3),       pthread_cleanup_push_defer_np(3),      pthread_setcancelstate(3),
       pthread_testcancel(3), pthreads(7)


       This page is part of release 4.04 of the Linux man-pages project.  A  description  of  the
       project,  information  about  reporting  bugs, and the latest version of this page, can be
       found at