Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all
NAME
slagv2.f -
SYNOPSIS
Functions/Subroutines subroutine slagv2 (A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL, CSR, SNR) SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular.
Function/Subroutine Documentation
subroutine slagv2 (real, dimension( lda, * ) A, integer LDA, real, dimension( ldb, * ) B, integer LDB, real, dimension( 2 ) ALPHAR, real, dimension( 2 ) ALPHAI, real, dimension( 2 ) BETA, real CSL, real SNL, real CSR, real SNR) SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. Purpose: SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR, SNR such that 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 types), then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, then [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] where b11 >= b22 > 0. Parameters: A A is REAL array, dimension (LDA, 2) On entry, the 2 x 2 matrix A. On exit, A is overwritten by the ``A-part'' of the generalized Schur form. LDA LDA is INTEGER THe leading dimension of the array A. LDA >= 2. B B is REAL array, dimension (LDB, 2) On entry, the upper triangular 2 x 2 matrix B. On exit, B is overwritten by the ``B-part'' of the generalized Schur form. LDB LDB is INTEGER THe leading dimension of the array B. LDB >= 2. ALPHAR ALPHAR is REAL array, dimension (2) ALPHAI ALPHAI is REAL array, dimension (2) BETA BETA is REAL array, dimension (2) (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero. CSL CSL is REAL The cosine of the left rotation matrix. SNL SNL is REAL The sine of the left rotation matrix. CSR CSR is REAL The cosine of the right rotation matrix. SNR SNR is REAL The sine of the right rotation matrix. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Contributors: Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Author
Generated automatically by Doxygen for LAPACK from the source code.