Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all
NAME
slanhs.f -
SYNOPSIS
Functions/Subroutines real function slanhs (NORM, N, A, LDA, WORK) SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
Function/Subroutine Documentation
real function slanhs (character NORM, integer N, real, dimension( lda, * ) A, integer LDA, real, dimension( * ) WORK) SLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix. Purpose: SLANHS returns the value of the one norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hessenberg matrix A. Returns: SLANHS SLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' ( ( norm1(A), NORM = '1', 'O' or 'o' ( ( normI(A), NORM = 'I' or 'i' ( ( normF(A), NORM = 'F', 'f', 'E' or 'e' where norm1 denotes the one norm of a matrix (maximum column sum), normI denotes the infinity norm of a matrix (maximum row sum) and normF denotes the Frobenius norm of a matrix (square root of sum of squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. Parameters: NORM NORM is CHARACTER*1 Specifies the value to be returned in SLANHS as described above. N N is INTEGER The order of the matrix A. N >= 0. When N = 0, SLANHS is set to zero. A A is REAL array, dimension (LDA,N) The n by n upper Hessenberg matrix A; the part of A below the first sub-diagonal is not referenced. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(N,1). WORK WORK is REAL array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I'; otherwise, WORK is not referenced. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012
Author
Generated automatically by Doxygen for LAPACK from the source code.