Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       strsna.f -

SYNOPSIS

   Functions/Subroutines
       subroutine strsna (JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, S, SEP, MM, M,
           WORK, LDWORK, IWORK, INFO)
           STRSNA

Function/Subroutine Documentation

   subroutine strsna (character JOB, character HOWMNY, logical, dimension( * ) SELECT, integer N,
       real, dimension( ldt, * ) T, integer LDT, real, dimension( ldvl, * ) VL, integer LDVL,
       real, dimension( ldvr, * ) VR, integer LDVR, real, dimension( * ) S, real, dimension( * )
       SEP, integer MM, integer M, real, dimension( ldwork, * ) WORK, integer LDWORK, integer,
       dimension( * ) IWORK, integer INFO)
       STRSNA

       Purpose:

            STRSNA estimates reciprocal condition numbers for specified
            eigenvalues and/or right eigenvectors of a real upper
            quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
            orthogonal).

            T must be in Schur canonical form (as returned by SHSEQR), that is,
            block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
            2-by-2 diagonal block has its diagonal elements equal and its
            off-diagonal elements of opposite sign.

       Parameters:
           JOB

                     JOB is CHARACTER*1
                     Specifies whether condition numbers are required for
                     eigenvalues (S) or eigenvectors (SEP):
                     = 'E': for eigenvalues only (S);
                     = 'V': for eigenvectors only (SEP);
                     = 'B': for both eigenvalues and eigenvectors (S and SEP).

           HOWMNY

                     HOWMNY is CHARACTER*1
                     = 'A': compute condition numbers for all eigenpairs;
                     = 'S': compute condition numbers for selected eigenpairs
                            specified by the array SELECT.

           SELECT

                     SELECT is LOGICAL array, dimension (N)
                     If HOWMNY = 'S', SELECT specifies the eigenpairs for which
                     condition numbers are required. To select condition numbers
                     for the eigenpair corresponding to a real eigenvalue w(j),
                     SELECT(j) must be set to .TRUE.. To select condition numbers
                     corresponding to a complex conjugate pair of eigenvalues w(j)
                     and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
                     set to .TRUE..
                     If HOWMNY = 'A', SELECT is not referenced.

           N

                     N is INTEGER
                     The order of the matrix T. N >= 0.

           T

                     T is REAL array, dimension (LDT,N)
                     The upper quasi-triangular matrix T, in Schur canonical form.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T. LDT >= max(1,N).

           VL

                     VL is REAL array, dimension (LDVL,M)
                     If JOB = 'E' or 'B', VL must contain left eigenvectors of T
                     (or of any Q*T*Q**T with Q orthogonal), corresponding to the
                     eigenpairs specified by HOWMNY and SELECT. The eigenvectors
                     must be stored in consecutive columns of VL, as returned by
                     SHSEIN or STREVC.
                     If JOB = 'V', VL is not referenced.

           LDVL

                     LDVL is INTEGER
                     The leading dimension of the array VL.
                     LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.

           VR

                     VR is REAL array, dimension (LDVR,M)
                     If JOB = 'E' or 'B', VR must contain right eigenvectors of T
                     (or of any Q*T*Q**T with Q orthogonal), corresponding to the
                     eigenpairs specified by HOWMNY and SELECT. The eigenvectors
                     must be stored in consecutive columns of VR, as returned by
                     SHSEIN or STREVC.
                     If JOB = 'V', VR is not referenced.

           LDVR

                     LDVR is INTEGER
                     The leading dimension of the array VR.
                     LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.

           S

                     S is REAL array, dimension (MM)
                     If JOB = 'E' or 'B', the reciprocal condition numbers of the
                     selected eigenvalues, stored in consecutive elements of the
                     array. For a complex conjugate pair of eigenvalues two
                     consecutive elements of S are set to the same value. Thus
                     S(j), SEP(j), and the j-th columns of VL and VR all
                     correspond to the same eigenpair (but not in general the
                     j-th eigenpair, unless all eigenpairs are selected).
                     If JOB = 'V', S is not referenced.

           SEP

                     SEP is REAL array, dimension (MM)
                     If JOB = 'V' or 'B', the estimated reciprocal condition
                     numbers of the selected eigenvectors, stored in consecutive
                     elements of the array. For a complex eigenvector two
                     consecutive elements of SEP are set to the same value. If
                     the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
                     is set to 0; this can only occur when the true value would be
                     very small anyway.
                     If JOB = 'E', SEP is not referenced.

           MM

                     MM is INTEGER
                     The number of elements in the arrays S (if JOB = 'E' or 'B')
                      and/or SEP (if JOB = 'V' or 'B'). MM >= M.

           M

                     M is INTEGER
                     The number of elements of the arrays S and/or SEP actually
                     used to store the estimated condition numbers.
                     If HOWMNY = 'A', M is set to N.

           WORK

                     WORK is REAL array, dimension (LDWORK,N+6)
                     If JOB = 'E', WORK is not referenced.

           LDWORK

                     LDWORK is INTEGER
                     The leading dimension of the array WORK.
                     LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.

           IWORK

                     IWORK is INTEGER array, dimension (2*(N-1))
                     If JOB = 'E', IWORK is not referenced.

           INFO

                     INFO is INTEGER
                     = 0: successful exit
                     < 0: if INFO = -i, the i-th argument had an illegal value

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

       Further Details:

             The reciprocal of the condition number of an eigenvalue lambda is
             defined as

                     S(lambda) = |v**T*u| / (norm(u)*norm(v))

             where u and v are the right and left eigenvectors of T corresponding
             to lambda; v**T denotes the transpose of v, and norm(u)
             denotes the Euclidean norm. These reciprocal condition numbers always
             lie between zero (very badly conditioned) and one (very well
             conditioned). If n = 1, S(lambda) is defined to be 1.

             An approximate error bound for a computed eigenvalue W(i) is given by

                                 EPS * norm(T) / S(i)

             where EPS is the machine precision.

             The reciprocal of the condition number of the right eigenvector u
             corresponding to lambda is defined as follows. Suppose

                         T = ( lambda  c  )
                             (   0    T22 )

             Then the reciprocal condition number is

                     SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )

             where sigma-min denotes the smallest singular value. We approximate
             the smallest singular value by the reciprocal of an estimate of the
             one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
             defined to be abs(T(1,1)).

             An approximate error bound for a computed right eigenvector VR(i)
             is given by

                                 EPS * norm(T) / SEP(i)

Author

       Generated automatically by Doxygen for LAPACK from the source code.