Provided by: cmake-data_3.5.1-1ubuntu3_all 

NAME
cmake-toolchains - CMake Toolchains Reference
INTRODUCTION
CMake uses a toolchain of utilities to compile, link libraries and create archives, and other tasks to
drive the build. The toolchain utilities available are determined by the languages enabled. In normal
builds, CMake automatically determines the toolchain for host builds based on system introspection and
defaults. In cross-compiling scenarios, a toolchain file may be specified with information about compiler
and utility paths.
LANGUAGES
Languages are enabled by the project() command. Language-specific built-in variables, such as
CMAKE_CXX_COMPILER, CMAKE_CXX_COMPILER_ID etc are set by invoking the project() command. If no project
command is in the top-level CMakeLists file, one will be implicitly generated. By default the enabled
languages are C and CXX:
project(C_Only C)
A special value of NONE can also be used with the project() command to enable no languages:
project(MyProject NONE)
The enable_language() command can be used to enable languages after the project() command:
enable_language(CXX)
When a language is enabled, CMake finds a compiler for that language, and determines some information,
such as the vendor and version of the compiler, the target architecture and bitwidth, the location of
corresponding utilities etc.
The ENABLED_LANGUAGES global property contains the languages which are currently enabled.
VARIABLES AND PROPERTIES
Several variables relate to the language components of a toolchain which are enabled.
CMAKE_<LANG>_COMPILER is the full path to the compiler used for <LANG>. CMAKE_<LANG>_COMPILER_ID is the
identifier used by CMake for the compiler and CMAKE_<LANG>_COMPILER_VERSION is the version of the
compiler.
The CMAKE_<LANG>_FLAGS variables and the configuration-specific equivalents contain flags that will be
added to the compile command when compiling a file of a particular language.
As the linker is invoked by the compiler driver, CMake needs a way to determine which compiler to use to
invoke the linker. This is calculated by the LANGUAGE of source files in the target, and in the case of
static libraries, the language of the dependent libraries. The choice CMake makes may be overridden with
the LINKER_LANGUAGE target property.
TOOLCHAIN FEATURES
CMake provides the try_compile() command and wrapper macros such as CheckCXXSourceCompiles,
CheckCXXSymbolExists and CheckIncludeFile to test capability and availability of various toolchain
features. These APIs test the toolchain in some way and cache the result so that the test does not have
to be performed again the next time CMake runs.
Some toolchain features have built-in handling in CMake, and do not require compile-tests. For example,
POSITION_INDEPENDENT_CODE allows specifying that a target should be built as position-independent code,
if the compiler supports that feature. The <LANG>_VISIBILITY_PRESET and VISIBILITY_INLINES_HIDDEN target
properties add flags for hidden visibility, if supported by the compiler.
CROSS COMPILING
If cmake(1) is invoked with the command line parameter -DCMAKE_TOOLCHAIN_FILE=path/to/file, the file will
be loaded early to set values for the compilers. The CMAKE_CROSSCOMPILING variable is set to true when
CMake is cross-compiling.
Cross Compiling for Linux
A typical cross-compiling toolchain for Linux has content such as:
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(CMAKE_SYSROOT /home/devel/rasp-pi-rootfs)
set(CMAKE_STAGING_PREFIX /home/devel/stage)
set(tools /home/devel/gcc-4.7-linaro-rpi-gnueabihf)
set(CMAKE_C_COMPILER ${tools}/bin/arm-linux-gnueabihf-gcc)
set(CMAKE_CXX_COMPILER ${tools}/bin/arm-linux-gnueabihf-g++)
set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_PACKAGE ONLY)
The CMAKE_SYSTEM_NAME is the CMake-identifier of the target platform to build for.
The CMAKE_SYSTEM_PROCESSOR is the CMake-identifier of the target architecture to build for.
The CMAKE_SYSROOT is optional, and may be specified if a sysroot is available.
The CMAKE_STAGING_PREFIX is also optional. It may be used to specify a path on the host to install to.
The CMAKE_INSTALL_PREFIX is always the runtime installation location, even when cross-compiling.
The CMAKE_<LANG>_COMPILER variables may be set to full paths, or to names of compilers to search for in
standard locations. In cases where CMake does not have enough information to extract information from the
compiler, the CMakeForceCompiler module can be used to bypass some of the checks.
CMake find_* commands will look in the sysroot, and the CMAKE_FIND_ROOT_PATH entries by default in all
cases, as well as looking in the host system root prefix. Although this can be controlled on a
case-by-case basis, when cross-compiling, it can be useful to exclude looking in either the host or the
target for particular artifacts. Generally, includes, libraries and packages should be found in the
target system prefixes, whereas executables which must be run as part of the build should be found only
on the host and not on the target. This is the purpose of the CMAKE_FIND_ROOT_PATH_MODE_* variables.
Cross Compiling for the Cray Linux Environment
Cross compiling for compute nodes in the Cray Linux Environment can be done without needing a separate
toolchain file. Specifying -DCMAKE_SYSTEM_NAME=CrayLinuxEnvironment on the CMake command line will
ensure that the appropriate build settings and search paths are configured. The platform will pull its
configuration from the current environment variables and will configure a project to use the compiler
wrappers from the Cray Programming Environment's PrgEnv-* modules if present and loaded.
The default configuration of the Cray Programming Environment is to only support static libraries. This
can be overridden and shared libraries enabled by setting the CRAYPE_LINK_TYPE environment variable to
dynamic.
Running CMake without specifying CMAKE_SYSTEM_NAME will run the configure step in host mode assuming a
standard Linux environment. If not overridden, the PrgEnv-* compiler wrappers will end up getting used,
which if targeting the either the login node or compute node, is likely not the desired behavior. The
exception to this would be if you are building directly on a NID instead of cross-compiling from a login
node. If trying to build software for a login node, you will need to either first unload the currently
loaded PrgEnv-* module or explicitly tell CMake to use the system compilers in /usr/bin instead of the
Cray wrappers. If instead targeting a compute node is desired, just specify the CMAKE_SYSTEM_NAME as
mentioned above.
Cross Compiling using Clang
Some compilers such as Clang are inherently cross compilers. The CMAKE_<LANG>_COMPILER_TARGET can be set
to pass a value to those supported compilers when compiling:
set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(triple arm-linux-gnueabihf)
set(CMAKE_C_COMPILER clang)
set(CMAKE_C_COMPILER_TARGET ${triple})
set(CMAKE_CXX_COMPILER clang++)
set(CMAKE_CXX_COMPILER_TARGET ${triple})
Similarly, some compilers do not ship their own supplementary utilities such as linkers, but provide a
way to specify the location of the external toolchain which will be used by the compiler driver. The
CMAKE_<LANG>_COMPILER_EXTERNAL_TOOLCHAIN variable can be set in a toolchain file to pass the path to the
compiler driver.
Cross Compiling for QNX
As the Clang compiler the QNX QCC compile is inherently a cross compiler. And the
CMAKE_<LANG>_COMPILER_TARGET can be set to pass a value to those supported compilers when compiling:
set(CMAKE_SYSTEM_NAME QNX)
set(arch gcc_ntoarmv7le)
set(CMAKE_C_COMPILER qcc)
set(CMAKE_C_COMPILER_TARGET ${arch})
set(CMAKE_CXX_COMPILER QCC)
set(CMAKE_CXX_COMPILER_TARGET ${arch})
Cross Compiling for Windows CE
Cross compiling for Windows CE requires the corresponding SDK being installed on your system. These SDKs
are usually installed under C:/Program Files (x86)/Windows CE Tools/SDKs.
A toolchain file to configure a Visual Studio generator for Windows CE may look like this:
set(CMAKE_SYSTEM_NAME WindowsCE)
set(CMAKE_SYSTEM_VERSION 8.0)
set(CMAKE_SYSTEM_PROCESSOR arm)
set(CMAKE_GENERATOR_TOOLSET CE800) # Can be omitted for 8.0
set(CMAKE_GENERATOR_PLATFORM SDK_AM335X_SK_WEC2013_V310)
The CMAKE_GENERATOR_PLATFORM tells the generator which SDK to use. Further CMAKE_SYSTEM_VERSION tells
the generator what version of Windows CE to use. Currently version 8.0 (Windows Embedded Compact 2013)
is supported out of the box. Other versions may require one to set CMAKE_GENERATOR_TOOLSET to the
correct value.
Cross Compiling for Windows 10 Universal Applications
A toolchain file to configure a Visual Studio generator for a Windows 10 Universal Application may look
like this:
set(CMAKE_SYSTEM_NAME WindowsStore)
set(CMAKE_SYSTEM_VERSION 10.0)
A Windows 10 Universal Application targets both Windows Store and Windows Phone. Specify the
CMAKE_SYSTEM_VERSION variable to be 10.0 to build with the latest available Windows 10 SDK. Specify a
more specific version (e.g. 10.0.10240.0 for RTM) to build with the corresponding SDK.
Cross Compiling for Windows Phone
A toolchain file to configure a Visual Studio generator for Windows Phone may look like this:
set(CMAKE_SYSTEM_NAME WindowsPhone)
set(CMAKE_SYSTEM_VERSION 8.1)
Cross Compiling for Windows Store
A toolchain file to configure a Visual Studio generator for Windows Store may look like this:
set(CMAKE_SYSTEM_NAME WindowsStore)
set(CMAKE_SYSTEM_VERSION 8.1)
Cross Compiling using NVIDIA Nsight Tegra
A toolchain file to configure a Visual Studio generator to build using NVIDIA Nsight Tegra targeting
Android may look like this:
set(CMAKE_SYSTEM_NAME Android)
The CMAKE_GENERATOR_TOOLSET may be set to select the Nsight Tegra "Toolchain Version" value.
See also target properties:
• ANDROID_ANT_ADDITIONAL_OPTIONS
• ANDROID_API_MIN
• ANDROID_API
• ANDROID_ARCH
• ANDROID_ASSETS_DIRECTORIES
• ANDROID_GUI
• ANDROID_JAR_DEPENDENCIES
• ANDROID_JAR_DIRECTORIES
• ANDROID_JAVA_SOURCE_DIR
• ANDROID_NATIVE_LIB_DEPENDENCIES
• ANDROID_NATIVE_LIB_DIRECTORIES
• ANDROID_PROCESS_MAX
• ANDROID_PROGUARD_CONFIG_PATH
• ANDROID_PROGUARD
• ANDROID_SECURE_PROPS_PATH
• ANDROID_SKIP_ANT_STEP
• ANDROID_STL_TYPE
COPYRIGHT
2000-2016 Kitware, Inc.
3.5.1 September 26, 2016 CMAKE-TOOLCHAINS(7)