Provided by: abigail-doc_1.0~rc3-1_all 

NAME
libabigail - Library to analyze and compare ELF ABIs
OVERVIEW OF LIBABIGAIL
Libabigail stands for the Application Binary Interface Generic Analysis and Instrumentation Library. It aims at helping developers and software distributors to spot some ABI-related issues like interface incompatibility in ELF shared libraries. The type of interface incompatibilities that libabigail focuses on is related to changes on the exported ELF functions and variables symbols, as well as layout and size changes of data types of the functions and variables exported by shared libraries. In other words, if the return type of a function exported by a shared library changes in an incompatible way from one version of a given shared library to another, we want libabigail to help people catch that. In more concrete terms, libabigail can parse a shared library in ELF format, accompanied with its associated debug information in DWARF format, build an internal representation of all the functions and variables it exports, along with their types. It also builds an internal representation of the ELF symbols of these functions and variables. That information about these exported functions and variables is roughly what we consider as being the ABI of the shared library, at least, in the scope of Libabigail. Aside of this internal representation, libabigail provides facilities to perform deep comparisons of two ABIs. That is, it can compare the types of two sets of functions or variables and represents the result in a way that allows it to emit textual reports about the differences. This allows us to write tools like abidiff that can compare the ABI of two shared libraries and represent the result in a meaningful enough way to help us spot ABI incompatibilities.
TOOLS
Overview The upstream code repository of Libabigail contains several tools written using the library. They are maintained and released as part of the project. All tools come with a bash-completion script. Tools manuals abidiff abidiff compares the Application Binary Interfaces (ABI) of two shared libraries in ELF format. It emits a meaningful report describing the differences between the two ABIs. For a comprehensive ABI change report that includes changes about function and variable sub-types, the two input shared libraries must be accompanied with their debug information in DWARF format. Otherwise, only ELF symbols that were added or removed are reported. Invocation abidiff [options] <first-shared-library> <second-shared-library> Options • --help | -h Display a short help about the command and exit. • --version | -v Display the version of the program and exit. • --debug-info-dir1 | --d1 <di-path1> For cases where the debug information for first-shared-library is split out into a separate file, tells abidiff where to find that separate debug information file. Note that di-path must point to the root directory under which the debug information is arranged in a tree-like manner. Under Red Hat based systems, that directory is usually <root>/usr/lib/debug. Note also that this option is not mandatory for split debug information installed by your system's package manager because then abidiff knows where to find it. • --debug-info-dir2 | --d2 <di-path2> Like --debug-info-dir1, this options tells abidiff where to find the split debug information for the second-shared-library file. • --stat Rather than displaying the detailed ABI differences between first-shared-library and second-shared-library, just display some summary statistics about these differences. • --symtabs Only display the symbol tables of the first-shared-library and second-shared-library. • --deleted-fns In the resulting report about the differences between first-shared-library and second-shared-library, only display the globally defined functions that got deleted from first-shared-library. • --changed-fns In the resulting report about the differences between first-shared-library and second-shared-library, only display the changes in sub-types of the global functions defined in first-shared-library. • --added-fns In the resulting report about the differences between first-shared-library and second-shared-library, only display the globally defined functions that were added to second-shared-library. • --deleted-vars In the resulting report about the differences between first-shared-library and second-shared-library, only display the globally defined variables that were deleted from first-shared-library. • --changed-vars In the resulting report about the differences between first-shared-library and second-shared-library, only display the changes in the sub-types of the global variables defined in first-shared-library • --added-vars In the resulting report about the differences between first-shared-library and second-shared-library, only display the global variables that were added (defined) to second-shared-library. • --no-linkage-name In the resulting report, do not display the linkage names of the added, removed, or changed functions or variables. • --no-show-locs Do not show information about where in the second shared library the respective type was changed. • --no-unreferenced-symbols In the resulting report, do not display change information about function and variable symbols that are not referenced by any debug information. Note that for these symbols not referenced by any debug information, the change information displayed is either added or removed symbols. • --suppressions | --suppr <path-to-suppressions> Use a suppression specification file located at path-to-suppressions. Note that this option can appear multiple times on the command line; all the suppression specification files are then taken into account. • --drop <regex> When reading the first-shared-library and second-shared-library ELF input files, drop the globally defined functions and variables which name match the regular expression regex. As a result, no change involving these functions or variables will be emitted in the diff report. • --drop-fn <regex> When reading the first-shared-library and second-shared-library ELF input files, drop the globally defined functions which name match the regular expression regex. As a result, no change involving these functions will be emitted in the diff report. • --drop-var <regex> When reading the first-shared-library and second-shared-library ELF input files, drop the globally defined variables matching a the regular expression regex. • --keep <regex> When reading the first-shared-library and second-shared-library ELF input files, keep the globally defined functions and variables which names match the regular expression regex. All other functions and variables are dropped on the floor and will thus not appear in the resulting diff report. • --keep-fn <regex> When reading the first-shared-library and second-shared-library ELF input files, keep the globally defined functions which name match the regular expression regex. All other functions are dropped on the floor and will thus not appear in the resulting diff report. • --keep-var <regex> When reading the first-shared-library and second-shared-library ELF input files, keep the globally defined which names match the regular expression regex. All other variables are dropped on the floor and will thus not appear in the resulting diff report. • --harmless In the diff report, display only the harmless changes. By default, the harmless changes are filtered out of the diff report keep the clutter to a minimum and have a greater change to spot real ABI issues. • --no-harmful In the diff report, do not display the harmful changes. By default, only the harmful changes are displayed in diff report. • --redundant In the diff report, do display redundant changes. A redundant change is a change that has been displayed elsewhere in the report. • --no-redundant In the diff report, do NOT display redundant changes. A redundant change is a change that has been displayed elsewhere in the report. This option is switched on by default. • --no-architecture Do not take architecture in account when comparing ABIs. • --dump-diff-tree After the diff report, emit a textual representation of the diff nodes tree used by the comparison engine to represent the changed functions and variables. That representation is emitted to the error output for debugging purposes. Note that this diff tree is relevant only to functions and variables that have some sub-type changes. Added or removed functions and variables do not have any diff nodes tree associated to them. • --stats Emit statistics about various internal things. • --verbose Emit verbose logs about the progress of miscellaneous internal things. Return values The exit code of the abidiff command is either 0 if the ABI of the binaries being compared are equal, or non-zero if they differ or if the tool encountered an error. In the later case, the exit code is a 8-bits-wide bit field in which each bit has a specific meaning. The first bit, of value 1, named ABIDIFF_ERROR means there was an error. The second bit, of value 2, named ABIDIFF_USAGE_ERROR means there was an error in the way the user invoked the tool. It might be set, for instance, if the user invoked the tool with an unknown command line switch, with a wrong number or argument, etc. If this bit is set, then the ABIDIFF_ERROR bit must be set as well. The third bit, of value 4, named ABIDIFF_ABI_CHANGE means the ABI of the binaries being compared are different. The fourth bit, of value 8, named ABIDIFF_ABI_INCOMPATIBLE_CHANGE means the ABI of the binaries compared are different in an incompatible way. If this bit is set, then the ABIDIFF_ABI_CHANGE bit must be set as well. If the ABIDIFF_ABI_CHANGE is set and the ABIDIFF_INCOMPATIBLE_CHANGE is NOT set, then it means that the ABIs being compared might or might not be compatible. In that case, a human being needs to review the ABI changes to decide if they are compatible or not. The remaining bits are not used for the moment. Usage examples 1. Detecting a change in a sub-type of a function: $ cat -n test-v0.cc 1 // Compile this with: 2 // g++ -g -Wall -shared -o libtest-v0.so test-v0.cc 3 4 struct S0 5 { 6 int m0; 7 }; 8 9 void 10 foo(S0* /*parameter_name*/) 11 { 12 // do something with parameter_name. 13 } $ $ cat -n test-v1.cc 1 // Compile this with: 2 // g++ -g -Wall -shared -o libtest-v1.so test-v1.cc 3 4 struct type_base 5 { 6 int inserted; 7 }; 8 9 struct S0 : public type_base 10 { 11 int m0; 12 }; 13 14 void 15 foo(S0* /*parameter_name*/) 16 { 17 // do something with parameter_name. 18 } $ $ g++ -g -Wall -shared -o libtest-v0.so test-v0.cc $ g++ -g -Wall -shared -o libtest-v1.so test-v1.cc $ $ ../build/tools/abidiff libtest-v0.so libtest-v1.so Functions changes summary: 0 Removed, 1 Changed, 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 function with some indirect sub-type change: [C]'function void foo(S0*)' has some indirect sub-type changes: parameter 0 of type 'S0*' has sub-type changes: in pointed to type 'struct S0': size changed from 32 to 64 bits 1 base class insertion: struct type_base 1 data member change: 'int S0::m0' offset changed from 0 to 32 $ 2. Detecting another change in a sub-type of a function: $ cat -n test-v0.cc 1 // Compile this with: 2 // g++ -g -Wall -shared -o libtest-v0.so test-v0.cc 3 4 struct S0 5 { 6 int m0; 7 }; 8 9 void 10 foo(S0& /*parameter_name*/) 11 { 12 // do something with parameter_name. 13 } $ $ cat -n test-v1.cc 1 // Compile this with: 2 // g++ -g -Wall -shared -o libtest-v1.so test-v1.cc 3 4 struct S0 5 { 6 char inserted_member; 7 int m0; 8 }; 9 10 void 11 foo(S0& /*parameter_name*/) 12 { 13 // do something with parameter_name. 14 } $ $ g++ -g -Wall -shared -o libtest-v0.so test-v0.cc $ g++ -g -Wall -shared -o libtest-v1.so test-v1.cc $ $ ../build/tools/abidiff libtest-v0.so libtest-v1.so Functions changes summary: 0 Removed, 1 Changed, 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 function with some indirect sub-type change: [C]'function void foo(S0&)' has some indirect sub-type changes: parameter 0 of type 'S0&' has sub-type changes: in referenced type 'struct S0': size changed from 32 to 64 bits 1 data member insertion: 'char S0::inserted_member', at offset 0 (in bits) 1 data member change: 'int S0::m0' offset changed from 0 to 32 $ 3. Detecting that functions got removed or added to a library: $ cat -n test-v0.cc 1 // Compile this with: 2 // g++ -g -Wall -shared -o libtest-v0.so test-v0.cc 3 4 struct S0 5 { 6 int m0; 7 }; 8 9 void 10 foo(S0& /*parameter_name*/) 11 { 12 // do something with parameter_name. 13 } $ $ cat -n test-v1.cc 1 // Compile this with: 2 // g++ -g -Wall -shared -o libtest-v1.so test-v1.cc 3 4 struct S0 5 { 6 char inserted_member; 7 int m0; 8 }; 9 10 void 11 bar(S0& /*parameter_name*/) 12 { 13 // do something with parameter_name. 14 } $ $ g++ -g -Wall -shared -o libtest-v0.so test-v0.cc $ g++ -g -Wall -shared -o libtest-v1.so test-v1.cc $ $ ../build/tools/abidiff libtest-v0.so libtest-v1.so Functions changes summary: 1 Removed, 0 Changed, 1 Added functions Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 Removed function: 'function void foo(S0&)' {_Z3fooR2S0} 1 Added function: 'function void bar(S0&)' {_Z3barR2S0} $ abipkgdiff abipkgdiff compares the Application Binary Interfaces (ABI) of the ELF binaries contained in two software packages. The software package formats currently supported are Deb, RPM, tar archives (either compressed or not) and plain directories that contain binaries. For a comprehensive ABI change report that includes changes about function and variable sub-types, the two input packages must be accompanied with their debug information packages that contain debug information in DWARF format. Invocation abipkgdiff [option] <package1> <package2> Options • --help | -h Display a short help about the command and exit. • --version | -v Display the version of the program and exit. • --debug-info-pkg1 | --d1 <path> For cases where the debug information for package1 is split out into a separate file, tells abipkgdiff where to find that separate debug information package. • --debug-info-pkg2 | --d2 <path> For cases where the debug information for package2 is split out into a separate file, tells abipkgdiff where to find that separate debug information package. • --dso-only Compare ELF files that are shared libraries, only. Do not compare executable files, for instance. • --redundant In the diff reports, do display redundant changes. A redundant change is a change that has been displayed elsewhere in a given report. • --no-linkage-name In the resulting report, do not display the linkage names of the added, removed, or changed functions or variables. • --no-added-syms Do not show the list of functions, variables, or any symbol that was added. • --no-added-binaries Do not show the list of binaries that got added to the second package. Please note that the presence of such added binaries is not considered like an ABI change by this tool; as such, it doesn't have any impact on the exit code of the tool. It does only have an informational value. Removed binaries are, however, considered as an ABI change. • --no-abignore Do not search the package2 for the presence of suppression files. • --no-parallel By default, abipkgdiff will use all the processors it has available to execute concurrently. This option tells it not to extract packages or run comparisons in parallel. • --suppressions | --suppr <path-to-suppressions> Use a suppression specification file located at path-to-suppressions. Note that this option can appear multiple times on the command line; all the suppression specification files are then taken into account. • --no-show-locs Do not show information about where in the second shared library the respective type was changed. • --fail-no-dbg Make the program fail and return a non-zero exit code if couldn't read any of the debug information that comes from the debug info packages that were given on the command line. If no debug info package were provided on the command line then this option is not active. Note that the non-zero exit code returned by the program as a result of this option is the constant ABIDIFF_ERROR. To know the numerical value of that constant, please refer to the exit code documentation. • --keep-tmp-files Do not erase the temporary directory files that are created during the execution of the tool. • --verbose Emit verbose progress messages. Return value The exit code of the abipkgdiff command is either 0 if the ABI of the binaries compared are equal, or non-zero if they differ or if the tool encountered an error. In the later case, the value of the exit code is the same as for the abidiff tool. abicompat abicompat checks that an application that links against a given shared library is still ABI compatible with a subsequent version of that library. If the new version of the library introduces an ABI incompatibility, then abicompat hints the user at what exactly that incompatibility is. Invocation abicompat [options] [<application> <shared-library-first-version> <shared-library-second-version>] Options • --help Display a short help about the command and exit. • --version | -v Display the version of the program and exit. • --list-undefined-symbols | -u Display the list of undefined symbols of the application and exit. • --show-base-names | -b In the resulting report emitted by the tool, this option makes the application and libraries be referred to by their base names only; not by a full absolute name. This can be useful for use in scripts that wants to compare names of the application and libraries independently of what their directory names are. • --app-debug-info-dir <path-to-app-debug-info-directory> Set the path to the directory under which the debug information of the application is supposed to be laid out. This is useful for application binaries for which the debug info is in a separate set of files. • --lib-debug-info-dir1 <path-to-lib1-debug-info> Set the path to the directory under which the debug information of the first version of the shared library is supposed to be laid out. This is useful for shared library binaries for which the debug info is in a separate set of files. • --lib-debug-info-dir2 <path-to-lib1-debug-info> Set the path to the directory under which the debug information of the second version of the shared library is supposed to be laid out. This is useful for shared library binaries for which the debug info is in a separate set of files. • --no-show-locs Do not show information about where in the second shared library the respective type was changed. • --weak-mode This triggers the weak mode of abicompat. In this mode, only one version of the library is required. That is, abicompat is invoked like this: abicompat --weak-mode <the-application> <the-library> Note that the --weak-mode option can even be omitted if only one version of the library is given, along with the application; in that case, abicompat automatically switches to operate in weak mode: abicompat <the-application> <the-library> In this weak mode, the types of functions and variables exported by the library and consumed by the application (as in, the symbols of the these functions and variables are undefined in the application and are defined and exported by the library) are compared to the version of these types as expected by the application. And if these two versions of types are different, abicompat tells the user what the differences are. In other words, in this mode, abicompat checks that the types of the functions and variables exported by the library mean the same thing as what the application expects, as far as the ABI is concerned. Note that in this mode, abicompat doesn't detect exported functions or variables (symbols) that are expected by the application but that are removed from the library. That is why it is called weak mode. Return values The exit code of the abicompat command is either 0 if the ABI of the binaries being compared are equal, or non-zero if they differ or if the tool encountered an error. In the later case, the exit code is a 8-bits-wide bit field in which each bit has a specific meaning. The first bit, of value 1, named ABIDIFF_ERROR means there was an error. The second bit, of value 2, named ABIDIFF_USAGE_ERROR means there was an error in the way the user invoked the tool. It might be set, for instance, if the user invoked the tool with an unknown command line switch, with a wrong number or argument, etc. If this bit is set, then the ABIDIFF_ERROR bit must be set as well. The third bit, of value 4, named ABIDIFF_ABI_CHANGE means the ABI of the binaries being compared are different. The fourth bit, of value 8, named ABIDIFF_ABI_INCOMPATIBLE_CHANGE means the ABI of the binaries compared are different in an incompatible way. If this bit is set, then the ABIDIFF_ABI_CHANGE bit must be set as well. If the ABIDIFF_ABI_CHANGE is set and the ABIDIFF_INCOMPATIBLE_CHANGE is NOT set, then it means that the ABIs being compared might or might not be compatible. In that case, a human being needs to review the ABI changes to decide if they are compatible or not. The remaining bits are not used for the moment. Usage examples • Detecting a possible ABI incompatibility in a new shared library version: $ cat -n test0.h 1 struct foo 2 { 3 int m0; 4 5 foo() 6 : m0() 7 {} 8 }; 9 10 foo* 11 first_func(); 12 13 void 14 second_func(foo&); 15 16 void 17 third_func(); $ $ cat -n test-app.cc 1 // Compile with: 2 // g++ -g -Wall -o test-app -L. -ltest-0 test-app.cc 3 4 #include "test0.h" 5 6 int 7 main() 8 { 9 foo* f = first_func(); 10 second_func(*f); 11 return 0; 12 } $ $ cat -n test0.cc 1 // Compile this with: 2 // g++ -g -Wall -shared -o libtest-0.so test0.cc 3 4 #include "test0.h" 5 6 foo* 7 first_func() 8 { 9 foo* f = new foo(); 10 return f; 11 } 12 13 void 14 second_func(foo&) 15 { 16 } 17 18 void 19 third_func() 20 { 21 } $ $ cat -n test1.h 1 struct foo 2 { 3 int m0; 4 char m1; /* <-- a new member got added here! */ 5 6 foo() 7 : m0(), 8 m1() 9 {} 10 }; 11 12 foo* 13 first_func(); 14 15 void 16 second_func(foo&); 17 18 void 19 third_func(); $ $ cat -n test1.cc 1 // Compile this with: 2 // g++ -g -Wall -shared -o libtest-1.so test1.cc 3 4 #include "test1.h" 5 6 foo* 7 first_func() 8 { 9 foo* f = new foo(); 10 return f; 11 } 12 13 void 14 second_func(foo&) 15 { 16 } 17 18 /* Let's comment out the definition of third_func() 19 void 20 third_func() 21 { 22 } 23 */ $ • Compile the first and second versions of the libraries: libtest-0.so and libtest-1.so: $ g++ -g -Wall -shared -o libtest-0.so test0.cc $ g++ -g -Wall -shared -o libtest-1.so test1.cc • Compile the application and link it against the first version of the library, creating the test-app binary: $ g++ -g -Wall -o test-app -L. -ltest-0.so test-app.cc • Now, use abicompat to see if libtest-1.so is ABI compatible with app, with respect to the ABI of libtest-0.so: $ abicompat test-app libtest-0.so libtest-1.so ELF file 'test-app' might not be ABI compatible with 'libtest-1.so' due to differences with 'libtest-0.so' below: Functions changes summary: 0 Removed, 2 Changed, 0 Added functions Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 2 functions with some indirect sub-type change: [C]'function foo* first_func()' has some indirect sub-type changes: return type changed: in pointed to type 'struct foo': size changed from 32 to 64 bits 1 data member insertion: 'char foo::m1', at offset 32 (in bits) [C]'function void second_func(foo&)' has some indirect sub-type changes: parameter 0 of type 'foo&' has sub-type changes: referenced type 'struct foo' changed, as reported earlier $ • Now use the weak mode of abicompat, that is, providing just the application and the new version of the library: $ abicompat --weak-mode test-app libtest-1.so functions defined in library 'libtest-1.so' have sub-types that are different from what application 'test-app' expects: function foo* first_func(): return type changed: in pointed to type 'struct foo': size changed from 32 to 64 bits 1 data member insertion: 'char foo::m1', at offset 32 (in bits) $ abidw abidw reads a shared library in ELF format and emits an XML representation of its ABI to standard output. The emitted representation includes all the globally defined functions and variables, along with a complete representation of their types. It also includes a representation of the globally defined ELF symbols of the file. The input shared library must contain associated debug information in DWARF format. Invocation abidw [options] [<path-to-elf-file>] Options • --help | -h Display a short help about the command and exit. • --version | -v Display the version of the program and exit. • --debug-info-dir | -d <dir-path> In cases where the debug info for path-to-elf-file is in a separate file that is located in a non-standard place, this tells abidw where to look for that debug info file. Note that dir-path must point to the root directory under which the debug information is arranged in a tree-like manner. Under Red Hat based systems, that directory is usually <root>/usr/lib/debug. Note that this option is not mandatory for split debug information installed by your system's package manager because then abidw knows where to find it. • --out-file <file-path> This option instructs abidw to emit the XML representation of path-to-elf-file into the file file-path, rather than emitting it to its standard output. • --noout This option instructs abidw to not emit the XML representation of the ABI. So it only reads the ELF and debug information, builds the internal representation of the ABI and exits. This option is usually useful for debugging purposes. • --check-alternate-debug-info <elf-path> If the debug info for the file elf-path contains a reference to an alternate debug info file, abidw checks that it can find that alternate debug info file. In that case, it emits a meaningful success message mentioning the full path to the alternate debug info file found. Otherwise, it emits an error code. • --no-show-locs Do not show information about where in the second shared library the respective type was changed. • --check-alternate-debug-info-base-name <elf-path> Like --check-alternate-debug-info, but in the success message, only mention the base name of the debug info file; not its full path. • --load-all-types By default, libabigail (and thus abidw) only loads types that are reachable from functions and variables declarations that are publicly defined and exported by the binary. So only those types are present in the output of abidw. This option however makes abidw load all the types defined in the binaries, even those that are not reachable from public declarations. • --abidiff Load the ABI of the ELF binary given in argument, save it in libabigail's XML format in a temporary file; read the ABI from the temporary XML file and compare the ABI that has been read back against the ABI of the ELF binary given in argument. The ABIs should compare equal. If they don't, the program emits a diagnostic and exits with a non-zero code. This is a debugging and sanity check option. • --stats Emit statistics about various internal things. • --verbose Emit verbose logs about the progress of miscellaneous internal things. Notes Alternate debug info files As of the version 4 of the DWARF specification, Alternate debug information is a GNU extension to the DWARF specification. It has however been proposed for inclusion into the upcoming version 5 of the DWARF standard. You can read more about the GNU extensions to the DWARF standard here. abilint abilint parses the native XML representation of an ABI as emitted by abidw. Once it has parsed the XML representation of the ABI, abilint builds and in-memory model from it. It then tries to save it back to an XML form, to standard output. If that read-write operation succeeds chances are the input XML ABI representation is meaningful. Note that the main intent of this tool to help debugging issues in the underlying Libabigail library. Note also that abilint can also read an ELF input file, build the in-memory model for its ABI, and serialize that model back into XML to standard output. In that case, the ELF input file must be accompanied with its debug information in the DWARF format. Invocation abilint [options] [<abi-file1>] Options • --help Display a short help message and exits. • --version | -v Display the version of the program and exit. • --debug-info-dir <path> When reading an ELF input file which debug information is split out into a separate file, this options tells abilint where to find that separate debug information file. Note that path must point to the root directory under which the debug information is arranged in a tree-like manner. Under Red Hat based systems, that directory is usually <root>/usr/lib/debug. Note also that this option is not mandatory for split debug information installed by your system's package manager because then abidiff knows where to find it. • --diff For XML inputs, perform a text diff between the input and the memory model saved back to disk. This can help to spot issues in the handling of the XML format by the underlying Libabigail library. • --noout Do not display anything on standard output. The return code of the command is the only way to know if the command succeeded. • --stdin | -- Read the input content from standard input. • --tu Expect the input XML to represent a single translation unit.
CONCEPTS
ABI artifacts An ABI artifact is a relevant part of the ABI of a shared library or program. Examples of ABI artifacts are exported types, variables, functions, or ELF symbols exported by a shared library. Harmful changes A change in the diff report is considered harmful if it might cause ABI compatibility issues. That is, it might prevent an application dynamically linked against a given version of a library to keep working with the changed subsequent versions of the same library. Harmless changes A change in the diff report is considered harmless if it will not cause any ABI compatibility issue. That is, it will not prevent an application dynamically linked against given version of a library to keep working with the changed subsequent versions of the same library. By default, abidiff filters harmless changes from the diff report. Suppression specifications Definition A suppression specification file is a way for a user to instruct abidiff to avoid emitting reports for changes involving certain ABI artifacts. It contains directives (or specifications) that describe the set of ABI artifacts to avoid emitting change reports about. Introductory examples Its syntax is based on a simplified and customized form of Ini File Syntax. For instance, to specify that change reports on a type named FooPrivateType should be suppressed, one could write this suppression specification: [suppress_type] name = FooPrivateType If we want to ensure that only change reports about structures named FooPrivateType should be suppressed, we could write: [suppress_type] type_kind = struct name = FooPrivateType But we could also want to suppress change reports avoid typedefs named FooPrivateType. In that case we would write: [suppress_type] type_kind = typedef name = FooPrivateType Or, we could want to suppress change reports about all struct which names end with the string "PrivateType": [suppress_type] type_kind = struct name_regexp = ^.*PrivateType Let's now look at the generic syntax of suppression specification files. Syntax Properties More generally, the format of suppression lists is organized around the concept of property. Every property has a name and a value, delimited by the = sign. E.g: name = value Leading and trailing white spaces are ignored around property names and values. Regular expressions The value of some properties might be a regular expression. In that case, they must comply with the syntax of extended POSIX regular expressions. Note that Libabigail uses the regular expression engine of the GNU C Library. Escaping a character in a regular expression When trying to match a string that contains a * character, like in the pointer type int*, one must be careful to notice that the character * is a special character in the extended POSIX regular expression syntax. And that character must be escaped for the regular expression engine. Thus the regular expression that would match the string int* in a suppression file should be int\\* Wait; but then why the two \ characters? Well, because the \ character is a special character in the Ini File Syntax used for specifying suppressions. So it must be escaped as well, so that the Ini File parser leaves a \ character intact in the data stream that is handed to the regular expression engine. Hence the \\ targeted at the Ini File parser. So, in short, to escape a character in a regular expression, always prefix the character with the \\ sequence. Sections Properties are then grouped into arbitrarily named sections that shall not be nested. The name of the section is on a line by itself and is surrounded by square brackets, i.e: [section_name] property1_name = property1_value property2_name = property2_value A section might or might not have properties. Sections that expect to have properties and which are found nonetheless empty are just ignored. Properties that are not recognized by the reader are ignored as well. Section names Each different section can be thought of as being a directive to suppress diff reports for a particular kind of ABI artifact. [suppress_type] This directive suppresses report messages about a type change. Note that for the [suppress_type] directive to work, at least one of the following properties must be provided: name, name_regexp, type_kind, source_location_not_in, source_location_not_regexp. If none of the following properties are provided, then the [suppression_type] directive is simply ignored. The potential properties of this sections are listed below: • file_name_regexp Usage: file_name_regexp = <regular-expression> Suppresses change reports about ABI artifacts that are defined in a binary file which name matches the regular expression specified as value of this property. • soname_regexp Usage: soname_regexp = <regular-expression> Suppresses change reports about ABI artifact that are defined in a shared library which SONAME matches the regular expression specified as value of this property. • name_regexp Usage: name_regexp = <regular-expression> Suppresses change reports involving types whose name matches the regular expression specified as value of this property. • name Usage: name = <a-value> Suppresses change reports involving types whose name equals the value of this property. • type_kind Usage: type_kind = class | struct | union | enum | array | typedef | builtin Suppresses change reports involving a certain kind of type. The kind of type to suppress change reports for is specified by the possible values listed above: • class: suppress change reports for class types. Note that even if class types don't exist for C, this value still triggers the suppression of change reports for struct types, in C. In C++ however, it should do what it suggests. • struct: suppress change reports for struct types in C or C++. Note that the value class above is a super-set of this one. • union: suppress change reports for union types. • enum: suppress change reports for enum types. • array: suppress change reports for array types. • typedef: suppress change reports for typedef types. • builtin: suppress change reports for built-in (or native) types. Example of built-in types are char, int, unsigned int, etc. • source_location_not_in Usage: source_location_not_in = <list-of-file-paths> Suppresses change reports involving a type which is defined in a file which path is NOT listed in the value list-of-file-paths. Note that the value is a comma-separated list of file paths e.g, this property source_location_not_in = libabigail/abg-ir.h, libabigail/abg-dwarf-reader.h suppresses change reports about all the types that are NOT defined in header files whose path end up with the strings libabigail/abg-ir.h or libabigail/abg-dwarf-reader.h. • source_location_not_regexp Usage: source_location_not_regexp = <regular-expression> Suppresses change reports involving a type which is defined in a file which path does NOT match the regular expression provided as value of the property. E.g, this property source_location_not_regexp = libabigail/abg-.*\\.h suppresses change reports involving all the types that are NOT defined in header files whose path match the regular expression provided a value of the property. • has_data_member_inserted_at Usage: has_data_member_inserted_at = <offset-in-bit> Suppresses change reports involving a type which has at least one data member inserted at an offset specified by the property value offset-in-bit. The value offset-in-bit is either: • an integer value, expressed in bits, which denotes the offset of the insertion point of the data member, starting from the beginning of the relevant structure or class. • the keyword end which is a named constant which value equals the offset of the end of the of the structure or class. • the function call expression offset_of(data-member-name) where data-member-name is the name of a given data member of the relevant structure or class. The value of this function call expression is an integer that represents the offset of the data member denoted by data-member-name. • the function call expression offset_after(data-member-name) where data-member-name is the name of a given data member of the relevant structure or class. The value of this function call expression is an integer that represents the offset of the point that comes right after the region occupied by the data member denoted by data-member-name. • has_data_member_inserted_between Usage: has_data_member_inserted_between = {<range-begin>, <range-end>} Suppresses change reports involving a type which has at least one data mber inserted at an offset that is comprised in the range between range-begin`` and range-end. Please note that each of the lues range-begin and range-end can be of the same form as the has_data_member_inserted_at property above. Usage examples of this properties are: has_data_member_inserted_between = {8, 64} or: has_data_member_inserted_between = {16, end} or: has_data_member_inserted_between = {offset_after(member1), end} • has_data_members_inserted_between Usage: has_data_members_inserted_between = {<sequence-of-ranges>} Suppresses change reports involving a type which has multiple data member inserted in various offset ranges. A usage example of this property is, for instance: has_data_members_inserted_between = {{8, 31}, {72, 95}} This usage example suppresses change reports involving a type which has data members inserted in bit offset ranges [8 31] and [72 95]. The length of the sequence of ranges or this has_data_members_inserted_between is not bounded; it can be as long as the system can cope with. The values of the boundaries of the ranges are of the same kind as for the has_data_member_inserted_at property above. Another usage example of this property is thus: has_data_members_inserted_between = { {offset_after(member0), offset_of(member1)}, {72, end} } • accessed_through Usage: accessed_through = <some-predefined-values> Suppress change reports involving a type which is referred to either directly or through a pointer or a reference. The potential values of this property are the predefined keywords below: • direct So if the [suppress_type] contains the property description: accessed_through = direct then changes about a type that is referred-to directly (i.e, not through a pointer or a reference) are going to be suppressed. • pointer If the accessed_through property is set to the value pointer then changes about a type that is referred-to through a pointer are going to be suppressed. • reference If the accessed_through property is set to the value reference then changes about a type that is referred-to through a reference are going to be suppressed. • reference-or-pointer If the accessed_through property is set to the value reference-or-pointer then changes about a type that is referred-to through either a reference or a pointer are going to be suppressed. For an extensive example of how to use this property, please check out the example below about suppressing change reports about types accessed either directly or through pointers. • label Usage: label = <some-value> Define a label for the section. A label is just an informative string that might be used by abidiff to refer to a type suppression in error messages. [suppress_function] This directive suppresses report messages about changes on a set of functions. Note that for the [suppress_function] directive to work, at least one of the following properties must be provided: label, name, name_regexp, parameter, return_type_name, symbol_name, symbol_name_regexp, symbol_version, symbol_version_regexp. If none of the following properties are provided, then the [suppression_function] directive is simply ignored. The potential properties of this sections are: • label Usage: label = <some-value> This property is the same as the label property defined above. • name Usage: name = <some-value> Suppresses change reports involving functions whose name equals the value of this property. • name_regexp Usage: name_regexp = <regular-expression> Suppresses change reports involving functions whose name matches the regular expression specified as value of this property. Let's consider the case of functions that have several symbol names. This happens when the underlying symbol for the function has aliases. Each symbol name is actually one alias name. In this case, if the regular expression matches the name of at least one of the aliases names, then it must match the names of all of the aliases of the function for the directive to actually suppress the diff reports for said function. • change_kind Usage: change_kind = <predefined-possible-values> Specifies the kind of changes this suppression specification should apply to. The possible values of this property as well as their meaning are listed below: • function-subtype-change This suppression specification applies to functions that which have at least one sub-type that has changed. • added-function This suppression specification applies to functions that have been added to the binary. • deleted-function This suppression specification applies to functions that have been removed from the binary. • all This suppression specification applies to functions that have all of the changes above. Note that not providing the change_kind property at all is equivalent to setting it to the value all. • parameter Usage: parameter = <function-parameter-specification> Suppresses change reports involving functions whose parameters match the parameter specification indicated as value of this property. The format of the function parameter specification is: ' <parameter-index> <space> <type-name-or-regular-expression> That is, an apostrophe followed by a number that is the index of the parameter, followed by one of several spaces, followed by either the name of the type of the parameter, or a regular expression describing a family of parameter type names. If the parameter type name is designated by a regular expression, then said regular expression must be enclosed between two slashes; like /some-regular-expression/. The index of the first parameter of the function is zero. Note that for member functions (methods of classes), the this is the first parameter that comes after the implicit "this" pointer parameter. Examples of function parameter specifications are: '0 int Which means, the parameter at index 0, whose type name is int. '4 unsigned char* Which means, the parameter at index 4, whose type name is unsigned char*. '2 /^foo.*&/ Which means, the parameter at index 2, whose type name starts with the string "foo" and ends with an '&'. In other words, this is the third parameter and it's a reference on a type that starts with the string "foo". • return_type_name Usage: return_type_name = <some-value> Suppresses change reports involving functions whose return type name equals the value of this property. • return_type_regexp Usage: return_type_regexp = <regular-expression> Suppresses change reports involving functions whose return type name matches the regular expression specified as value of this property. • symbol_name Usage: symbol_name = <some-value> Suppresses change reports involving functions whose symbol name equals the value of this property. • symbol_name_regexp Usage: symbol_name_regexp = <regular-expression> Suppresses change reports involving functions whose symbol name matches the regular expression specified as value of this property. Let's consider the case of functions that have several symbol names. This happens when the underlying symbol for the function has aliases. Each symbol name is actually one alias name. In this case, the regular expression must match the names of all of the aliases of the function for the directive to actually suppress the diff reports for said function. • symbol_version Usage: symbol_version = <some-value> Suppresses change reports involving functions whose symbol version equals the value of this property. • symbol_version_regexp Usage: symbol_version_regexp = <regular-expression> Suppresses change reports involving functions whose symbol version matches the regular expression specified as value of this property. [suppress_variable] This directive suppresses report messages about changes on a set of variables. Note that for the [suppress_variable] directive to work, at least one of the following properties must be provided: label, name, name_regexp, symbol_name, symbol_name_regexp, symbol_version, symbol_version_regexp. If none of the following properties are provided, then the [suppres_variable] directive is simply ignored. The potential properties of this sections are: • label Usage: label = <some-value> This property is the same as the label property defined above. • name Usage: name = <some-value> Suppresses change reports involving variables whose name equals the value of this property. • name_regexp Usage: name_regexp = <regular-expression> Suppresses change reports involving variables whose name matches the regular expression specified as value of this property. • change_kind Usage: change_kind = <predefined-possible-values> Specifies the kind of changes this suppression specification should apply to. The possible values of this property as well as their meaning are the same as when it's used in the [suppress_function] section. • symbol_name Usage: symbol_name = <some-value> Suppresses change reports involving variables whose symbol name equals the value of this property. • symbol_name_regexp Usage: symbol_name_regexp = <regular-expression> Suppresses change reports involving variables whose symbol name matches the regular expression specified as value of this property. • symbol_version Usage: symbol_version = <some-value> Suppresses change reports involving variables whose symbol version equals the value of this property. • symbol_version_regexp Usage: symbol_version_regexp = <regular-expression> Suppresses change reports involving variables whose symbol version matches the regular expression specified as value of this property. • type_name Usage: type_name = <some-value> Suppresses change reports involving variables whose type name equals the value of this property. • type_name_regexp Usage: type_name_regexp = <regular-expression> Suppresses change reports involving variables whose type name matches the regular expression specified as value of this property. Comments ; or # ASCII character at the beginning of a line indicates a comment. Comment lines are ignored. Code examples 1. Suppressing change reports about types. Suppose we have a library named libtest1-v0.so which contains this very useful code: $ cat -n test1-v0.cc 1 // A forward declaration for a type considered to be opaque to 2 // function foo() below. 3 struct opaque_type; 4 5 // This function cannot touch any member of opaque_type. Hence, 6 // changes to members of opaque_type should not impact foo, as far as 7 // ABI is concerned. 8 void 9 foo(opaque_type*) 10 { 11 } 12 13 struct opaque_type 14 { 15 int member0; 16 char member1; 17 }; $ Let's change the layout of struct opaque_type by inserting a data member around line 15, leading to a new version of the library, that we shall name libtest1-v1.so: $ cat -n test1-v1.cc 1 // A forward declaration for a type considered to be opaque to 2 // function foo() below. 3 struct opaque_type; 4 5 // This function cannot touch any member of opaque_type; Hence, 6 // changes to members of opaque_type should not impact foo, as far as 7 // ABI is concerned. 8 void 9 foo(opaque_type*) 10 { 11 } 12 13 struct opaque_type 14 { 15 char added_member; // <-- a new member got added here now. 16 int member0; 17 char member1; 18 }; $ Let's compile both examples. We shall not forget to compile them with debug information generation turned on: $ g++ -shared -g -Wall -o libtest1-v0.so test1-v0.cc $ g++ -shared -g -Wall -o libtest1-v1.so test1-v1.cc Let's ask abidiff which ABI differences it sees between libtest1-v0.so and libtest1-v1.so: $ abidiff libtest1-v0.so libtest1-v1.so Functions changes summary: 0 Removed, 1 Changed, 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 function with some indirect sub-type change: [C]'function void foo(opaque_type*)' has some indirect sub-type changes: parameter 0 of type 'opaque_type*' has sub-type changes: in pointed to type 'struct opaque_type': size changed from 64 to 96 bits 1 data member insertion: 'char opaque_type::added_member', at offset 0 (in bits) 2 data member changes: 'int opaque_type::member0' offset changed from 0 to 32 'char opaque_type::member1' offset changed from 32 to 64 So abidiff reports that the opaque_type's layout has changed in a significant way, as far as ABI implications are concerned, in theory. After all, a sub-type (struct opaque_type) of an exported function (foo()) has seen its layout change. This might have non negligible ABI implications. But in practice here, the programmer of the litest1-v1.so library knows that the "soft" contract between the function foo() and the type struct opaque_type is to stay away from the data members of the type. So layout changes of struct opaque_type should not impact foo(). Now to teach abidiff about this soft contract and have it avoid emitting what amounts to false positives in this case, we write the suppression specification file below: $ cat test1.suppr [suppress_type] type_kind = struct name = opaque_type Translated in plain English, this suppression specification would read: "Do not emit change reports about a struct which name is opaque_type". Let's now invoke abidiff on the two versions of the library again, but this time with the suppression specification: $ abidiff --suppressions test1.suppr libtest1-v0.so libtest1-v1.so Functions changes summary: 0 Removed, 0 Changed (1 filtered out), 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable As you can see, abidiff does not report the change anymore; it tells us that it was filtered out instead. Suppressing change reports about types with data member insertions Suppose the first version of a library named libtest3-v0.so has this source code: /* Compile this with: gcc -g -Wall -shared -o libtest3-v0.so test3-v0.c */ struct S { char member0; int member1; /* between member1 and member2, there is some padding, at least on some popular platforms. On these platforms, adding a small enough data member into that padding shouldn't change the offset of member1. Right? */ }; int foo(struct S* s) { return s->member0 + s->member1; } Now, suppose the second version of the library named libtest3-v1.so has this source code in which a data member has been added in the padding space of struct S and another data member has been added at its end: /* Compile this with: gcc -g -Wall -shared -o libtest3-v1.so test3-v1.c */ struct S { char member0; char inserted1; /* <---- A data member has been added here... */ int member1; char inserted2; /* <---- ... and another one has been added here. */ }; int foo(struct S* s) { return s->member0 + s->member1; } In libtest3-v1.so, adding char data members S::inserted1 and S::inserted2 can be considered harmless (from an ABI compatibility perspective), at least on the x86 platform, because that doesn't change the offsets of the data members S::member0 and S::member1. But then running abidiff on these two versions of library yields: $ abidiff libtest3-v0.so libtest3-v1.so Functions changes summary: 0 Removed, 1 Changed, 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 function with some indirect sub-type change: [C]'function int foo(S*)' has some indirect sub-type changes: parameter 0 of type 'S*' has sub-type changes: in pointed to type 'struct S': type size changed from 64 to 96 bits 2 data member insertions: 'char S::inserted1', at offset 8 (in bits) 'char S::inserted2', at offset 64 (in bits) $ That is, abidiff shows us the two changes, even though we (the developers of that very involved library) know that these changes are harmless in this particular context. Luckily, we can devise a suppression specification that essentially tells abidiff to filter out change reports about adding a data member between S::member0 and S::member1, and adding a data member at the end of struct S. We have written such a suppression specification in a file called test3-1.suppr and it unsurprisingly looks like: [suppress_type] name = S has_data_member_inserted_between = {offset_after(member0), offset_of(member1)} has_data_member_inserted_at = end Now running abidiff with this suppression specification yields: $ ../build/tools/abidiff --suppressions test3-1.suppr libtest3-v0.so libtest3-v1.so Functions changes summary: 0 Removed, 0 Changed (1 filtered out), 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable $ Hooora! \o/ (I guess) Suppressing change reports about types accessed either directly or through pointers Suppose we have a first version of an object file which source code is the file widget-v0.cc below: // Compile with: g++ -g -c widget-v0.cc struct widget { int x; int y; widget() :x(), y() {} }; void fun0(widget*) { // .. do stuff here. } void fun1(widget&) { // .. do stuff here .. } void fun2(widget w) { // ... do other stuff here ... } Now suppose in the second version of that file, named widget-v1.cc, we have added some data members at the end of the type struct widget; here is what the content of that file would look like: // Compile with: g++ -g -c widget-v1.cc struct widget { int x; int y; int w; // We have added these two new data members here .. int h; // ... and here. widget() : x(), y(), w(), h() {} }; void fun0(widget*) { // .. do stuff here. } void fun1(widget&) { // .. do stuff here .. } void fun2(widget w) { // ... do other stuff here ... } When we invoke abidiff on the object files resulting from the compilation of the two file above, here is what we get: $ abidiff widget-v0.o widget-v1.o Functions changes summary: 0 Removed, 2 Changed (1 filtered out), 0 Added functions Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 2 functions with some indirect sub-type change: [C]'function void fun0(widget*)' has some indirect sub-type changes: parameter 1 of type 'widget*' has sub-type changes: in pointed to type 'struct widget': type size changed from 64 to 128 bits 2 data member insertions: 'int widget::w', at offset 64 (in bits) 'int widget::h', at offset 96 (in bits) [C]'function void fun2(widget)' has some indirect sub-type changes: parameter 1 of type 'struct widget' has sub-type changes: details were reported earlier $ I guess a little bit of explaining is due here. abidiff detects that two data member got added at the end of struct widget. it also tells us that the type change impacts the exported function fun0() which uses the type struct widget through a pointer, in its signature. Careful readers will notice that the change to struct widget also impacts the exported function fun1(), that uses type struct widget through a reference. But then abidiff doesn't tell us about the impact on that function fun1() because it has evaluated that change as being redundant with the change it reported on fun0(). It has thus filtered it out, to avoid cluttering the output with noise. Redundancy detection and filtering is fine and helpful to avoid burying the important information in a sea of noise. However, it must be treated with care, by fear of mistakenly filtering out relevant and important information. That is why abidiff tells us about the impact that the change to struct widget has on function fun2(). In this case, that function uses the type struct widget directly (in its signature). It does not use it via a pointer or a reference. In this case, the direct use of this type causes fun2() to be exposed to a potentially harmful ABI change. Hence, the report about fun2() is not filtered out, even though it's about that same change on struct widget. To go further in suppressing reports about changes that are harmless and keeping only those that we know are harmful, we would like to go tell abidiff to suppress reports about this particular struct widget change when it impacts uses of struct widget through a pointer or reference. In other words, suppress the change reports about fun0() and fun1(). We would then write this suppression specification, in file widget.suppr: [suppress_type] name = widget type_kind = struct has_data_member_inserted_at = end accessed_through = reference-or-pointer # So this suppression specification says to suppress reports about # the type 'struct widget', if this type was added some data member # at its end, and if the change impacts uses of the type through a # reference or a pointer. Invoking abidiff on widget-v0.o and widget-v1.o with this suppression specification yields: $ abidiff --suppressions widget.suppr widget-v0.o widget-v1.o Functions changes summary: 0 Removed, 1 Changed (2 filtered out), 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 function with some indirect sub-type change: [C]'function void fun2(widget)' has some indirect sub-type changes: parameter 1 of type 'struct widget' has sub-type changes: type size changed from 64 to 128 bits 2 data member insertions: 'int widget::w', at offset 64 (in bits) 'int widget::h', at offset 96 (in bits) $ As expected, I guess. Suppressing change reports about functions. Suppose we have a first version a library named libtest2-v0.so whose source code is: $ cat -n test2-v0.cc 1 struct S1 2 { 3 int m0; 4 5 S1() 6 : m0() 7 {} 8 }; 9 10 struct S2 11 { 12 int m0; 13 14 S2() 15 : m0() 16 {} 17 }; 18 19 struct S3 20 { 21 int m0; 22 23 S3() 24 : m0() 25 {} 26 }; 27 28 int 29 func(S1&) 30 { 31 // suppose the code does something with the argument. 32 return 0; 33 34 } 35 36 char 37 func(S2*) 38 { 39 // suppose the code does something with the argument. 40 return 0; 41 } 42 43 unsigned 44 func(S3) 45 { 46 // suppose the code does something with the argument. 47 return 0; 48 } $ And then we come up with a second version libtest2-v1.so of that library; the source code is modified by making the structures S1, S2, S3 inherit another struct: $ cat -n test2-v1.cc 1 struct base_type 2 { 3 int m_inserted; 4 }; 5 6 struct S1 : public base_type // <--- S1 now has base_type as its base 7 // type. 8 { 9 int m0; 10 11 S1() 12 : m0() 13 {} 14 }; 15 16 struct S2 : public base_type // <--- S2 now has base_type as its base 17 // type. 18 { 19 int m0; 20 21 S2() 22 : m0() 23 {} 24 }; 25 26 struct S3 : public base_type // <--- S3 now has base_type as its base 27 // type. 28 { 29 int m0; 30 31 S3() 32 : m0() 33 {} 34 }; 35 36 int 37 func(S1&) 38 { 39 // suppose the code does something with the argument. 40 return 0; 41 42 } 43 44 char 45 func(S2*) 46 { 47 // suppose the code does something with the argument. 48 return 0; 49 } 50 51 unsigned 52 func(S3) 53 { 54 // suppose the code does something with the argument. 55 return 0; 56 } $ Now let's build the two libraries: g++ -Wall -g -shared -o libtest2-v0.so test2-v0.cc g++ -Wall -g -shared -o libtest2-v0.so test2-v0.cc Let's look at the output of abidiff: $ abidiff libtest2-v0.so libtest2-v1.so Functions changes summary: 0 Removed, 3 Changed, 0 Added functions Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 3 functions with some indirect sub-type change: [C]'function unsigned int func(S3)' has some indirect sub-type changes: parameter 0 of type 'struct S3' has sub-type changes: size changed from 32 to 64 bits 1 base class insertion: struct base_type 1 data member change: 'int S3::m0' offset changed from 0 to 32 [C]'function char func(S2*)' has some indirect sub-type changes: parameter 0 of type 'S2*' has sub-type changes: in pointed to type 'struct S2': size changed from 32 to 64 bits 1 base class insertion: struct base_type 1 data member change: 'int S2::m0' offset changed from 0 to 32 [C]'function int func(S1&)' has some indirect sub-type changes: parameter 0 of type 'S1&' has sub-type changes: in referenced type 'struct S1': size changed from 32 to 64 bits 1 base class insertion: struct base_type 1 data member change: 'int S1::m0' offset changed from 0 to 32 $ Let's tell abidiff to avoid showing us the differences on the overloads of func that takes either a pointer or a reference. For that, we author this simple suppression specification: $ cat -n libtest2.suppr 1 [suppress_function] 2 name = func 3 parameter = '0 S1& 4 5 [suppress_function] 6 name = func 7 parameter = '0 S2* $ And then let's invoke abidiff with the suppression specification: $ ../build/tools/abidiff --suppressions libtest2.suppr libtest2-v0.so libtest2-v1.so Functions changes summary: 0 Removed, 1 Changed (2 filtered out), 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 function with some indirect sub-type change: [C]'function unsigned int func(S3)' has some indirect sub-type changes: parameter 0 of type 'struct S3' has sub-type changes: size changed from 32 to 64 bits 1 base class insertion: struct base_type 1 data member change: 'int S3::m0' offset changed from 0 to 32 The suppression specification could be reduced using regular expressions: $ cat -n libtest2-1.suppr 1 [suppress_function] 2 name = func 3 parameter = '0 /^S.(&|\\*)/ $ $ ../build/tools/abidiff --suppressions libtest2-1.suppr libtest2-v0.so libtest2-v1.so Functions changes summary: 0 Removed, 1 Changed (2 filtered out), 0 Added function Variables changes summary: 0 Removed, 0 Changed, 0 Added variable 1 function with some indirect sub-type change: [C]'function unsigned int func(S3)' has some indirect sub-type changes: parameter 0 of type 'struct S3' has sub-type changes: size changed from 32 to 64 bits 1 base class insertion: struct base_type 1 data member change: 'int S3::m0' offset changed from 0 to 32 $
AUTHOR
Dodji Seketeli
COPYRIGHT
2014, Red Hat, Inc. March 10, 2016 LIBABIGAIL(7)