Provided by: apt_1.2.35_amd64 bug

NAME

       apt-secure - Archive authentication support for APT

DESCRIPTION

       Starting with version 0.6, APT contains code that does signature checking of the Release
       file for all repositories. This ensures that data like packages in the archive can't be
       modified by people who have no access to the Release file signing key.

       If an archive has an unsigned Release file or no Release file at all current APT versions
       will raise a warning in update operations and front-ends like apt-get will require
       explicit confirmation if an installation request includes a package from such an
       unauthenticated archive.

       In the future APT will refuse to work with unauthenticated repositories by default until
       support for them is removed entirely. Users have the option to opt-in to this behavior
       already by setting the configuration option Acquire::AllowInsecureRepositories to false.

       Note: All APT-based package management front-ends like apt-get(8), aptitude(8) and
       synaptic(8) support this authentication feature, so this manpage uses APT to refer to them
       all for simplicity only.

TRUSTED REPOSITORIES

       The chain of trust from an APT archive to the end user is made up of several steps.
       apt-secure is the last step in this chain; trusting an archive does not mean that you
       trust its packages not to contain malicious code, but means that you trust the archive
       maintainer. It's the archive maintainer's responsibility to ensure that the archive's
       integrity is preserved.

       apt-secure does not review signatures at a package level. If you require tools to do this
       you should look at debsig-verify and debsign (provided in the debsig-verify and devscripts
       packages respectively).

       The chain of trust in Debian starts (e.g.) when a maintainer uploads a new package or a
       new version of a package to the Debian archive. In order to become effective, this upload
       needs to be signed by a key contained in one of the Debian package maintainer keyrings
       (available in the debian-keyring package). Maintainers' keys are signed by other
       maintainers following pre-established procedures to ensure the identity of the key holder.
       Similar procedures exist in all Debian-based distributions.

       Once the uploaded package is verified and included in the archive, the maintainer
       signature is stripped off, and checksums of the package are computed and put in the
       Packages file. The checksums of all of the Packages files are then computed and put into
       the Release file. The Release file is then signed by the archive key for this Ubuntu
       release, and distributed alongside the packages and the Packages files on Ubuntu mirrors.
       The keys are in the Ubuntu archive keyring available in the ubuntu-keyring package.

       End users can check the signature of the Release file, extract a checksum of a package
       from it and compare it with the checksum of the package they downloaded by hand - or rely
       on APT doing this automatically.

       Notice that this is distinct from checking signatures on a per package basis. It is
       designed to prevent two possible attacks:

       •   Network "man in the middle" attacks. Without signature checking, malicious agents can
           introduce themselves into the package download process and provide malicious software
           either by controlling a network element (router, switch, etc.) or by redirecting
           traffic to a rogue server (through ARP or DNS spoofing attacks).

       •   Mirror network compromise. Without signature checking, a malicious agent can
           compromise a mirror host and modify the files in it to propagate malicious software to
           all users downloading packages from that host.

       However, it does not defend against a compromise of the master server itself (which signs
       the packages) or against a compromise of the key used to sign the Release files. In any
       case, this mechanism can complement a per-package signature.

USER CONFIGURATION

       apt-key is the program that manages the list of keys used by APT to trust repositories. It
       can be used to add or remove keys as well as list the trusted keys. Limiting which key(s)
       are able to sign which archive is possible via the Signed-By in sources.list(5).

       Note that a default installation already contains all keys to securely acquire packages
       from the default repositories, so fiddling with apt-key is only needed if third-party
       repositories are added.

       In order to add a new key you need to first download it (you should make sure you are
       using a trusted communication channel when retrieving it), add it with apt-key and then
       run apt-get update so that apt can download and verify the InRelease or Release.gpg files
       from the archives you have configured.

ARCHIVE CONFIGURATION

       If you want to provide archive signatures in an archive under your maintenance you have
       to:

       •   Create a toplevel Release file, if it does not exist already. You can do this by
           running apt-ftparchive release (provided in apt-utils).

       •   Sign it. You can do this by running gpg --clearsign -o InRelease Release and gpg -abs
           -o Release.gpg Release.

       •   Publish the key fingerprint, so that your users will know what key they need to import
           in order to authenticate the files in the archive. It is best to ship your key in its
           own keyring package like Ubuntu does with ubuntu-keyring to be able to distribute
           updates and key transitions automatically later.

       •   Provide instructions on how to add your archive and key. If your users can't acquire
           your key securely the chain of trust described above is broken. How you can help users
           add your key depends on your archive and target audience ranging from having your
           keyring package included in another archive users already have configured (like the
           default repositories of their distribution) to leveraging the web of trust.

       Whenever the contents of the archive change (new packages are added or removed) the
       archive maintainer has to follow the first two steps outlined above.

SEE ALSO

       apt.conf(5), apt-get(8), sources.list(5), apt-key(8), apt-ftparchive(1), debsign(1),
       debsig-verify(1), gpg(1)

       For more background information you might want to review the Debian Security
       Infrastructure[1] chapter of the Securing Debian Manual (also available in the harden-doc
       package) and the Strong Distribution HOWTO[2] by V. Alex Brennen.

BUGS

       APT bug page[3]. If you wish to report a bug in APT, please see
       /usr/share/doc/debian/bug-reporting.txt or the reportbug(1) command.

AUTHOR

       APT was written by the APT team <apt@packages.debian.org>.

MANPAGE AUTHORS

       This man-page is based on the work of Javier Fernández-Sanguino Peña, Isaac Jones, Colin
       Walters, Florian Weimer and Michael Vogt.

AUTHORS

       Jason Gunthorpe

       APT team

NOTES

        1. Debian Security Infrastructure
           https://www.debian.org/doc/manuals/securing-debian-howto/ch7

        2. Strong Distribution HOWTO
           http://www.cryptnet.net/fdp/crypto/strong_distro.html

        3. APT bug page
           http://bugs.debian.org/src:apt