Provided by: ffmpeg_2.8.17-0ubuntu0.1_amd64 bug

NAME

       ffmpeg-filters - FFmpeg filters

DESCRIPTION

       This document describes filters, sources, and sinks provided by the libavfilter library.

FILTERING INTRODUCTION

       Filtering in FFmpeg is enabled through the libavfilter library.

       In libavfilter, a filter can have multiple inputs and multiple outputs.  To illustrate the sorts of
       things that are possible, we consider the following filtergraph.

                               [main]
               input --> split ---------------------> overlay --> output
                           |                             ^
                           |[tmp]                  [flip]|
                           +-----> crop --> vflip -------+

       This filtergraph splits the input stream in two streams, then sends one stream through the crop filter
       and the vflip filter, before merging it back with the other stream by overlaying it on top. You can use
       the following command to achieve this:

               ffmpeg -i INPUT -vf "split [main][tmp]; [tmp] crop=iw:ih/2:0:0, vflip [flip]; [main][flip] overlay=0:H/2" OUTPUT

       The result will be that the top half of the video is mirrored onto the bottom half of the output video.

       Filters in the same linear chain are separated by commas, and distinct linear chains of filters are
       separated by semicolons. In our example, crop,vflip are in one linear chain, split and overlay are
       separately in another. The points where the linear chains join are labelled by names enclosed in square
       brackets. In the example, the split filter generates two outputs that are associated to the labels [main]
       and [tmp].

       The stream sent to the second output of split, labelled as [tmp], is processed through the crop filter,
       which crops away the lower half part of the video, and then vertically flipped. The overlay filter takes
       in input the first unchanged output of the split filter (which was labelled as [main]), and overlay on
       its lower half the output generated by the crop,vflip filterchain.

       Some filters take in input a list of parameters: they are specified after the filter name and an equal
       sign, and are separated from each other by a colon.

       There exist so-called source filters that do not have an audio/video input, and sink filters that will
       not have audio/video output.

GRAPH

       The graph2dot program included in the FFmpeg tools directory can be used to parse a filtergraph
       description and issue a corresponding textual representation in the dot language.

       Invoke the command:

               graph2dot -h

       to see how to use graph2dot.

       You can then pass the dot description to the dot program (from the graphviz suite of programs) and obtain
       a graphical representation of the filtergraph.

       For example the sequence of commands:

               echo <GRAPH_DESCRIPTION> | \
               tools/graph2dot -o graph.tmp && \
               dot -Tpng graph.tmp -o graph.png && \
               display graph.png

       can be used to create and display an image representing the graph described by the GRAPH_DESCRIPTION
       string. Note that this string must be a complete self-contained graph, with its inputs and outputs
       explicitly defined.  For example if your command line is of the form:

               ffmpeg -i infile -vf scale=640:360 outfile

       your GRAPH_DESCRIPTION string will need to be of the form:

               nullsrc,scale=640:360,nullsink

       you may also need to set the nullsrc parameters and add a format filter in order to simulate a specific
       input file.

FILTERGRAPH DESCRIPTION

       A filtergraph is a directed graph of connected filters. It can contain cycles, and there can be multiple
       links between a pair of filters. Each link has one input pad on one side connecting it to one filter from
       which it takes its input, and one output pad on the other side connecting it to one filter accepting its
       output.

       Each filter in a filtergraph is an instance of a filter class registered in the application, which
       defines the features and the number of input and output pads of the filter.

       A filter with no input pads is called a "source", and a filter with no output pads is called a "sink".

   Filtergraph syntax
       A filtergraph has a textual representation, which is recognized by the -filter/-vf/-af and
       -filter_complex options in ffmpeg and -vf/-af in ffplay, and by the "avfilter_graph_parse_ptr()" function
       defined in libavfilter/avfilter.h.

       A filterchain consists of a sequence of connected filters, each one connected to the previous one in the
       sequence. A filterchain is represented by a list of ","-separated filter descriptions.

       A filtergraph consists of a sequence of filterchains. A sequence of filterchains is represented by a list
       of ";"-separated filterchain descriptions.

       A filter is represented by a string of the form:
       [in_link_1]...[in_link_N]filter_name=arguments[out_link_1]...[out_link_M]

       filter_name is the name of the filter class of which the described filter is an instance of, and has to
       be the name of one of the filter classes registered in the program.  The name of the filter class is
       optionally followed by a string "=arguments".

       arguments is a string which contains the parameters used to initialize the filter instance. It may have
       one of two forms:

       •   A ':'-separated list of key=value pairs.

       •   A ':'-separated list of value. In this case, the keys are assumed to be the option names in the order
           they  are  declared. E.g. the "fade" filter declares three options in this order -- type, start_frame
           and nb_frames. Then the parameter list in:0:30 means that the value in  is  assigned  to  the  option
           type, 0 to start_frame and 30 to nb_frames.

       •   A  ':'-separated  list  of mixed direct value and long key=value pairs. The direct value must precede
           the key=value pairs, and follow the same constraints order  of  the  previous  point.  The  following
           key=value pairs can be set in any preferred order.

       If  the  option value itself is a list of items (e.g. the "format" filter takes a list of pixel formats),
       the items in the list are usually separated by |.

       The list of arguments can be quoted using the character ' as initial and ending mark, and the character \
       for escaping the characters  within  the  quoted  text;  otherwise  the  argument  string  is  considered
       terminated when the next special character (belonging to the set []=;,) is encountered.

       The  name  and  arguments of the filter are optionally preceded and followed by a list of link labels.  A
       link label allows one to name a link and associate it to a filter output  or  input  pad.  The  preceding
       labels  in_link_1 ... in_link_N, are associated to the filter input pads, the following labels out_link_1
       ... out_link_M, are associated to the output pads.

       When two link labels with the same name are found in the filtergraph, a link  between  the  corresponding
       input and output pad is created.

       If  an  output pad is not labelled, it is linked by default to the first unlabelled input pad of the next
       filter in the filterchain.  For example in the filterchain

               nullsrc, split[L1], [L2]overlay, nullsink

       the split filter instance has two output pads, and the overlay filter instance two input pads. The  first
       output  pad  of  split  is labelled "L1", the first input pad of overlay is labelled "L2", and the second
       output pad of split is linked to the second input pad of overlay, which are both unlabelled.

       In a filter description, if the input label of the first filter is not specified, "in" is assumed; if the
       output label of the last filter is not specified, "out" is assumed.

       In a complete filterchain all  the  unlabelled  filter  input  and  output  pads  must  be  connected.  A
       filtergraph  is  considered  valid  if  all  the filter input and output pads of all the filterchains are
       connected.

       Libavfilter will automatically insert scale filters where format conversion is required. It  is  possible
       to specify swscale flags for those automatically inserted scalers by prepending "sws_flags=flags;" to the
       filtergraph description.

       Here is a BNF description of the filtergraph syntax:

               <NAME>             ::= sequence of alphanumeric characters and '_'
               <LINKLABEL>        ::= "[" <NAME> "]"
               <LINKLABELS>       ::= <LINKLABEL> [<LINKLABELS>]
               <FILTER_ARGUMENTS> ::= sequence of chars (possibly quoted)
               <FILTER>           ::= [<LINKLABELS>] <NAME> ["=" <FILTER_ARGUMENTS>] [<LINKLABELS>]
               <FILTERCHAIN>      ::= <FILTER> [,<FILTERCHAIN>]
               <FILTERGRAPH>      ::= [sws_flags=<flags>;] <FILTERCHAIN> [;<FILTERGRAPH>]

   Notes on filtergraph escaping
       Filtergraph  description  composition  entails several levels of escaping. See the "Quoting and escaping"
       section in the ffmpeg-utils(1) manual for more information about the employed escaping procedure.

       A first level escaping affects the content of each filter option value, which  may  contain  the  special
       character ":" used to separate values, or one of the escaping characters "\'".

       A  second  level escaping affects the whole filter description, which may contain the escaping characters
       "\'" or the special characters "[],;" used by the filtergraph description.

       Finally, when you specify a filtergraph on a shell  commandline,  you  need  to  perform  a  third  level
       escaping for the shell special characters contained within it.

       For example, consider the following string to be embedded in the drawtext filter description text value:

               this is a 'string': may contain one, or more, special characters

       This string contains the "'" special escaping character, and the ":" special character, so it needs to be
       escaped in this way:

               text=this is a \'string\'\: may contain one, or more, special characters

       A  second  level  of  escaping  is  required  when  embedding  the  filter  description  in a filtergraph
       description, in order to escape all the filtergraph special characters. Thus the example above becomes:

               drawtext=text=this is a \\\'string\\\'\\: may contain one\, or more\, special characters

       (note that in addition to the "\'" escaping special characters, also "," needs to be escaped).

       Finally an additional level of escaping is needed when writing the filtergraph  description  in  a  shell
       command,  which  depends  on  the  escaping rules of the adopted shell. For example, assuming that "\" is
       special and needs to be escaped with another "\", the previous string will finally result in:

               -vf "drawtext=text=this is a \\\\\\'string\\\\\\'\\\\: may contain one\\, or more\\, special characters"

TIMELINE EDITING

       Some filters support a generic enable option. For the filters supporting timeline  editing,  this  option
       can be set to an expression which is evaluated before sending a frame to the filter. If the evaluation is
       non-zero,  the  filter  will be enabled, otherwise the frame will be sent unchanged to the next filter in
       the filtergraph.

       The expression accepts the following values:

       t   timestamp expressed in seconds, NAN if the input timestamp is unknown

       n   sequential number of the input frame, starting from 0

       pos the position in the file of the input frame, NAN if unknown

       w
       h   width and height of the input frame if video

       Additionally, these filters support an enable command that can be used to re-define the expression.

       Like any other filtering option, the enable option follows the same rules.

       For example, to enable a blur filter (smartblur) from 10 seconds  to  3  minutes,  and  a  curves  filter
       starting at 3 seconds:

               smartblur = enable='between(t,10,3*60)',
               curves    = enable='gte(t,3)' : preset=cross_process

AUDIO FILTERS

       When   you   configure   your   FFmpeg  build,  you  can  disable  any  of  the  existing  filters  using
       "--disable-filters".  The configure output will show the audio filters included in your build.

       Below is a description of the currently available audio filters.

   acrossfade
       Apply cross fade from one input audio stream to another input audio stream.  The cross  fade  is  applied
       for specified duration near the end of first stream.

       The filter accepts the following options:

       nb_samples, ns
           Specify  the  number of samples for which the cross fade effect has to last.  At the end of the cross
           fade effect the first input audio will be completely silent. Default is 44100.

       duration, d
           Specify the duration of the cross fade effect. See the Time duration section in  the  ffmpeg-utils(1)
           manual  for  the  accepted syntax.  By default the duration is determined by nb_samples.  If set this
           option is used instead of nb_samples.

       overlap, o
           Should first stream end overlap with second stream start. Default is enabled.

       curve1
           Set curve for cross fade transition for first stream.

       curve2
           Set curve for cross fade transition for second stream.

           For description of available curve types see afade filter description.

       Examples

       •   Cross fade from one input to another:

                   ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:c1=exp:c2=exp output.flac

       •   Cross fade from one input to another but without overlapping:

                   ffmpeg -i first.flac -i second.flac -filter_complex acrossfade=d=10:o=0:c1=exp:c2=exp output.flac

   adelay
       Delay one or more audio channels.

       Samples in delayed channel are filled with silence.

       The filter accepts the following option:

       delays
           Set list of delays in milliseconds for each channel separated by '|'.  At  least  one  delay  greater
           than  0  should  be  provided.   Unused delays will be silently ignored. If number of given delays is
           smaller than number of channels all remaining channels will not be delayed.

       Examples

       •   Delay first channel by 1.5 seconds, the third channel by 0.5 seconds and  leave  the  second  channel
           (and any other channels that may be present) unchanged.

                   adelay=1500|0|500

   aecho
       Apply echoing to the input audio.

       Echoes are reflected sound and can occur naturally amongst mountains (and sometimes large buildings) when
       talking  or shouting; digital echo effects emulate this behaviour and are often used to help fill out the
       sound of a single instrument or vocal. The time difference between the original signal and the reflection
       is the "delay", and the loudness of the reflected signal  is  the  "decay".   Multiple  echoes  can  have
       different delays and decays.

       A description of the accepted parameters follows.

       in_gain
           Set input gain of reflected signal. Default is 0.6.

       out_gain
           Set output gain of reflected signal. Default is 0.3.

       delays
           Set  list of time intervals in milliseconds between original signal and reflections separated by '|'.
           Allowed range for each "delay" is "(0 - 90000.0]".  Default is 1000.

       decays
           Set list of loudnesses of reflected signals separated by '|'.  Allowed range for each "decay" is  "(0
           - 1.0]".  Default is 0.5.

       Examples

       •   Make it sound as if there are twice as many instruments as are actually playing:

                   aecho=0.8:0.88:60:0.4

       •   If delay is very short, then it sound like a (metallic) robot playing music:

                   aecho=0.8:0.88:6:0.4

       •   A longer delay will sound like an open air concert in the mountains:

                   aecho=0.8:0.9:1000:0.3

       •   Same as above but with one more mountain:

                   aecho=0.8:0.9:1000|1800:0.3|0.25

   aeval
       Modify an audio signal according to the specified expressions.

       This  filter  accepts  one  or  more  expressions (one for each channel), which are evaluated and used to
       modify a corresponding audio signal.

       It accepts the following parameters:

       exprs
           Set the '|'-separated expressions list for each separate channel. If the number of input channels  is
           greater  than  the  number  of  expressions,  the last specified expression is used for the remaining
           output channels.

       channel_layout, c
           Set output channel layout. If not specified, the  channel  layout  is  specified  by  the  number  of
           expressions. If set to same, it will use by default the same input channel layout.

       Each expression in exprs can contain the following constants and functions:

       ch  channel number of the current expression

       n   number of the evaluated sample, starting from 0

       s   sample rate

       t   time of the evaluated sample expressed in seconds

       nb_in_channels
       nb_out_channels
           input and output number of channels

       val(CH)
           the value of input channel with number CH

       Note: this filter is slow. For faster processing you should use a dedicated filter.

       Examples

       •   Half volume:

                   aeval=val(ch)/2:c=same

       •   Invert phase of the second channel:

                   aeval=val(0)|-val(1)

   afade
       Apply fade-in/out effect to input audio.

       A description of the accepted parameters follows.

       type, t
           Specify  the  effect type, can be either "in" for fade-in, or "out" for a fade-out effect. Default is
           "in".

       start_sample, ss
           Specify the number of the start sample for starting to apply the fade effect. Default is 0.

       nb_samples, ns
           Specify the number of samples for which the fade effect has to last. At the end of the fade-in effect
           the output audio will have the same volume as the input audio, at the end of the fade-out  transition
           the output audio will be silence. Default is 44100.

       start_time, st
           Specify  the  start  time  of  the  fade effect. Default is 0.  The value must be specified as a time
           duration; see the Time duration section in the ffmpeg-utils(1) manual for the  accepted  syntax.   If
           set this option is used instead of start_sample.

       duration, d
           Specify  the duration of the fade effect. See the Time duration section in the ffmpeg-utils(1) manual
           for the accepted syntax.  At the end of the fade-in effect the output audio will have the same volume
           as the input audio, at the end of the fade-out transition the  output  audio  will  be  silence.   By
           default the duration is determined by nb_samples.  If set this option is used instead of nb_samples.

       curve
           Set curve for fade transition.

           It accepts the following values:

           tri select triangular, linear slope (default)

           qsin
               select quarter of sine wave

           hsin
               select half of sine wave

           esin
               select exponential sine wave

           log select logarithmic

           ipar
               select inverted parabola

           qua select quadratic

           cub select cubic

           squ select square root

           cbr select cubic root

           par select parabola

           exp select exponential

           iqsin
               select inverted quarter of sine wave

           ihsin
               select inverted half of sine wave

           dese
               select double-exponential seat

           desi
               select double-exponential sigmoid

       Examples

       •   Fade in first 15 seconds of audio:

                   afade=t=in:ss=0:d=15

       •   Fade out last 25 seconds of a 900 seconds audio:

                   afade=t=out:st=875:d=25

   aformat
       Set  output  format  constraints  for  the input audio. The framework will negotiate the most appropriate
       format to minimize conversions.

       It accepts the following parameters:

       sample_fmts
           A '|'-separated list of requested sample formats.

       sample_rates
           A '|'-separated list of requested sample rates.

       channel_layouts
           A '|'-separated list of requested channel layouts.

           See the Channel Layout section in the ffmpeg-utils(1) manual for the required syntax.

       If a parameter is omitted, all values are allowed.

       Force the output to either unsigned 8-bit or signed 16-bit stereo

               aformat=sample_fmts=u8|s16:channel_layouts=stereo

   allpass
       Apply a two-pole all-pass filter with central frequency (in Hz) frequency, and  filter-width  width.   An
       all-pass  filter  changes  the  audio's frequency to phase relationship without changing its frequency to
       amplitude relationship.

       The filter accepts the following options:

       frequency, f
           Set frequency in Hz.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.

   amerge
       Merge two or more audio streams into a single multi-channel stream.

       The filter accepts the following options:

       inputs
           Set the number of inputs. Default is 2.

       If the channel layouts of the inputs are disjoint, and therefore compatible, the channel  layout  of  the
       output will be set accordingly and the channels will be reordered as necessary. If the channel layouts of
       the  inputs  are  not  disjoint,  the  output  will have all the channels of the first input then all the
       channels of the second input, in that order, and the channel layout of the output  will  be  the  default
       value corresponding to the total number of channels.

       For  example,  if  the first input is in 2.1 (FL+FR+LF) and the second input is FC+BL+BR, then the output
       will be in 5.1, with the channels in the following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel
       of the first input, b1 is the first channel of the second input).

       On the other hand, if both input are in stereo, the output channels will be in the default order: a1, a2,
       b1, b2, and the channel layout will be arbitrarily set to 4.0, which may  or  may  not  be  the  expected
       value.

       All inputs must have the same sample rate, and format.

       If inputs do not have the same duration, the output will stop with the shortest.

       Examples

       •   Merge two mono files into a stereo stream:

                   amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge

       •   Multiple merges assuming 1 video stream and 6 audio streams in input.mkv:

                   ffmpeg -i input.mkv -filter_complex "[0:1][0:2][0:3][0:4][0:5][0:6] amerge=inputs=6" -c:a pcm_s16le output.mkv

   amix
       Mixes multiple audio inputs into a single output.

       Note  that  this  filter  only  supports  float  samples  (the  amerge and pan audio filters support many
       formats). If the amix input has integer samples then aresample will be automatically inserted to  perform
       the conversion to float samples.

       For example

               ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT

       will mix 3 input audio streams to a single output with the same duration as the first input and a dropout
       transition time of 3 seconds.

       It accepts the following parameters:

       inputs
           The number of inputs. If unspecified, it defaults to 2.

       duration
           How to determine the end-of-stream.

           longest
               The duration of the longest input. (default)

           shortest
               The duration of the shortest input.

           first
               The duration of the first input.

       dropout_transition
           The  transition  time,  in seconds, for volume renormalization when an input stream ends. The default
           value is 2 seconds.

   anull
       Pass the audio source unchanged to the output.

   apad
       Pad the end of an audio stream with silence.

       This can be used together with ffmpeg -shortest to extend audio streams to the same length as  the  video
       stream.

       A description of the accepted options follows.

       packet_size
           Set silence packet size. Default value is 4096.

       pad_len
           Set  the  number  of  samples of silence to add to the end. After the value is reached, the stream is
           terminated. This option is mutually exclusive with whole_len.

       whole_len
           Set the minimum total number of samples in the output audio stream. If the value is longer  than  the
           input  audio length, silence is added to the end, until the value is reached. This option is mutually
           exclusive with pad_len.

       If neither the pad_len nor the whole_len option is set, the filter will add silence to  the  end  of  the
       input stream indefinitely.

       Examples

       •   Add 1024 samples of silence to the end of the input:

                   apad=pad_len=1024

       •   Make  sure  the  audio  output  will  contain  at  least 10000 samples, pad the input with silence if
           required:

                   apad=whole_len=10000

       •   Use ffmpeg to pad the audio input with silence, so that the  video  stream  will  always  result  the
           shortest and will be converted until the end in the output file when using the shortest option:

                   ffmpeg -i VIDEO -i AUDIO -filter_complex "[1:0]apad" -shortest OUTPUT

   aphaser
       Add a phasing effect to the input audio.

       A phaser filter creates series of peaks and troughs in the frequency spectrum.  The position of the peaks
       and troughs are modulated so that they vary over time, creating a sweeping effect.

       A description of the accepted parameters follows.

       in_gain
           Set input gain. Default is 0.4.

       out_gain
           Set output gain. Default is 0.74

       delay
           Set delay in milliseconds. Default is 3.0.

       decay
           Set decay. Default is 0.4.

       speed
           Set modulation speed in Hz. Default is 0.5.

       type
           Set modulation type. Default is triangular.

           It accepts the following values:

           triangular, t
           sinusoidal, s

   aresample
       Resample  the  input  audio  to  the  specified  parameters, using the libswresample library. If none are
       specified then the filter will automatically convert between its input and output.

       This filter is also able to stretch/squeeze the audio data to make it match the timestamps or  to  inject
       silence / cut out audio to make it match the timestamps, do a combination of both or do neither.

       The  filter accepts the syntax [sample_rate:]resampler_options, where sample_rate expresses a sample rate
       and resampler_options is a list of key=value pairs, separated by ":". See the ffmpeg-resampler manual for
       the complete list of supported options.

       Examples

       •   Resample the input audio to 44100Hz:

                   aresample=44100

       •   Stretch/squeeze samples to  the  given  timestamps,  with  a  maximum  of  1000  samples  per  second
           compensation:

                   aresample=async=1000

   asetnsamples
       Set the number of samples per each output audio frame.

       The  last  output  packet  may  contain  a  different number of samples, as the filter will flush all the
       remaining samples when the input audio signal its end.

       The filter accepts the following options:

       nb_out_samples, n
           Set the number of frames per each output audio frame. The number is intended as the number of samples
           per each channel.  Default value is 1024.

       pad, p
           If set to 1, the filter will pad the last audio frame with  zeroes,  so  that  the  last  frame  will
           contain the same number of samples as the previous ones. Default value is 1.

       For example, to set the number of per-frame samples to 1234 and disable padding for the last frame, use:

               asetnsamples=n=1234:p=0

   asetrate
       Set the sample rate without altering the PCM data.  This will result in a change of speed and pitch.

       The filter accepts the following options:

       sample_rate, r
           Set the output sample rate. Default is 44100 Hz.

   ashowinfo
       Show a line containing various information for each input audio frame.  The input audio is not modified.

       The shown line contains a sequence of key/value pairs of the form key:value.

       The following values are shown in the output:

       n   The (sequential) number of the input frame, starting from 0.

       pts The  presentation  timestamp  of  the  input  frame, in time base units; the time base depends on the
           filter input pad, and is usually 1/sample_rate.

       pts_time
           The presentation timestamp of the input frame in seconds.

       pos position of the frame in the input stream, -1 if this information in unavailable  and/or  meaningless
           (for example in case of synthetic audio)

       fmt The sample format.

       chlayout
           The channel layout.

       rate
           The sample rate for the audio frame.

       nb_samples
           The number of samples (per channel) in the frame.

       checksum
           The  Adler-32  checksum  (printed  in  hexadecimal)  of the audio data. For planar audio, the data is
           treated as if all the planes were concatenated.

       plane_checksums
           A list of Adler-32 checksums for each data plane.

   astats
       Display time domain statistical information about the audio  channels.   Statistics  are  calculated  and
       displayed for each audio channel and, where applicable, an overall figure is also given.

       It accepts the following option:

       length
           Short  window  length  in  seconds,  used  for  peak and trough RMS measurement.  Default is 0.05 (50
           milliseconds). Allowed range is "[0.1 - 10]".

       metadata
           Set metadata injection. All the metadata keys  are  prefixed  with  "lavfi.astats.X",  where  "X"  is
           channel number starting from 1 or string "Overall". Default is disabled.

           Available  keys  for  each  channel  are: DC_offset Min_level Max_level Min_difference Max_difference
           Mean_difference Peak_level RMS_peak RMS_trough Crest_factor Flat_factor Peak_count Bit_depth

           and  for  Overall:  DC_offset  Min_level  Max_level  Min_difference  Max_difference   Mean_difference
           Peak_level RMS_level RMS_peak RMS_trough Flat_factor Peak_count Bit_depth Number_of_samples

           For     example     full     key     look    like    this    "lavfi.astats.1.DC_offset"    or    this
           "lavfi.astats.Overall.Peak_count".

           For description what each key means read below.

       reset
           Set number of frame after which stats are going to be recalculated.  Default is disabled.

       A description of each shown parameter follows:

       DC offset
           Mean amplitude displacement from zero.

       Min level
           Minimal sample level.

       Max level
           Maximal sample level.

       Min difference
           Minimal difference between two consecutive samples.

       Max difference
           Maximal difference between two consecutive samples.

       Mean difference
           Mean difference between two  consecutive  samples.   The  average  of  each  difference  between  two
           consecutive samples.

       Peak level dB
       RMS level dB
           Standard peak and RMS level measured in dBFS.

       RMS peak dB
       RMS trough dB
           Peak and trough values for RMS level measured over a short window.

       Crest factor
           Standard ratio of peak to RMS level (note: not in dB).

       Flat factor
           Flatness (i.e. consecutive samples with the same value) of the signal at its peak levels (i.e. either
           Min level or Max level).

       Peak count
           Number  of  occasions  (not  the  number of samples) that the signal attained either Min level or Max
           level.

       Bit depth
           Overall bit depth of audio. Number of bits used for each sample.

   astreamsync
       Forward two audio streams and control the order the buffers are forwarded.

       The filter accepts the following options:

       expr, e
           Set the expression deciding which stream should be forwarded next: if the  result  is  negative,  the
           first  stream is forwarded; if the result is positive or zero, the second stream is forwarded. It can
           use the following variables:

           b1 b2
               number of buffers forwarded so far on each stream

           s1 s2
               number of samples forwarded so far on each stream

           t1 t2
               current timestamp of each stream

           The default value is "t1-t2", which means to always forward the stream that has a smaller timestamp.

       Examples

       Stress-test "amerge" by randomly sending buffers on the  wrong  input,  while  avoiding  too  much  of  a
       desynchronization:

               amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
               [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
               [a2] [b2] amerge

   asyncts
       Synchronize  audio data with timestamps by squeezing/stretching it and/or dropping samples/adding silence
       when needed.

       This filter is not built by default, please use aresample to do squeezing/stretching.

       It accepts the following parameters:

       compensate
           Enable stretching/squeezing the data to make it match  the  timestamps.  Disabled  by  default.  When
           disabled, time gaps are covered with silence.

       min_delta
           The  minimum  difference  between  timestamps  and audio data (in seconds) to trigger adding/dropping
           samples. The default value is 0.1. If you get an imperfect sync with this filter,  try  setting  this
           parameter to 0.

       max_comp
           The  maximum  compensation in samples per second. Only relevant with compensate=1.  The default value
           is 500.

       first_pts
           Assume that the first PTS should be this value. The time base is 1 / sample  rate.  This  allows  for
           padding/trimming  at  the  start  of  the  stream.  By default, no assumption is made about the first
           frame's expected PTS, so no padding or trimming is done. For example, this could be set to 0  to  pad
           the  beginning  with  silence if an audio stream starts after the video stream or to trim any samples
           with a negative PTS due to encoder delay.

   atempo
       Adjust audio tempo.

       The filter accepts exactly one parameter, the audio tempo. If not specified then the filter  will  assume
       nominal 1.0 tempo. Tempo must be in the [0.5, 2.0] range.

       Examples

       •   Slow down audio to 80% tempo:

                   atempo=0.8

       •   To speed up audio to 125% tempo:

                   atempo=1.25

   atrim
       Trim the input so that the output contains one continuous subpart of the input.

       It accepts the following parameters:

       start
           Timestamp  (in seconds) of the start of the section to keep. I.e. the audio sample with the timestamp
           start will be the first sample in the output.

       end Specify time of the first audio sample that will  be  dropped,  i.e.  the  audio  sample  immediately
           preceding the one with the timestamp end will be the last sample in the output.

       start_pts
           Same as start, except this option sets the start timestamp in samples instead of seconds.

       end_pts
           Same as end, except this option sets the end timestamp in samples instead of seconds.

       duration
           The maximum duration of the output in seconds.

       start_sample
           The number of the first sample that should be output.

       end_sample
           The number of the first sample that should be dropped.

       start,  end, and duration are expressed as time duration specifications; see the Time duration section in
       the ffmpeg-utils(1) manual.

       Note that the first two sets of the  start/end  options  and  the  duration  option  look  at  the  frame
       timestamp,  while  the  _sample  options  simply  count  the  samples  that  pass  through the filter. So
       start/end_pts and start/end_sample will give different results when the timestamps are wrong, inexact  or
       do  not start at zero. Also note that this filter does not modify the timestamps. If you wish to have the
       output timestamps start at zero, insert the asetpts filter after the atrim filter.

       If multiple start or end options are set, this filter tries to be greedy and keep all samples that  match
       at  least  one  of  the  specified constraints. To keep only the part that matches all the constraints at
       once, chain multiple atrim filters.

       The defaults are such that all the input is kept. So it is possible to set e.g.  just the end  values  to
       keep everything before the specified time.

       Examples:

       •   Drop everything except the second minute of input:

                   ffmpeg -i INPUT -af atrim=60:120

       •   Keep only the first 1000 samples:

                   ffmpeg -i INPUT -af atrim=end_sample=1000

   bandpass
       Apply  a  two-pole  Butterworth  band-pass filter with central frequency frequency, and (3dB-point) band-
       width width.  The csg option selects a constant skirt gain (peak  gain  =  Q)  instead  of  the  default:
       constant 0dB peak gain.  The filter roll off at 6dB per octave (20dB per decade).

       The filter accepts the following options:

       frequency, f
           Set the filter's central frequency. Default is 3000.

       csg Constant skirt gain if set to 1. Defaults to 0.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.

   bandreject
       Apply  a  two-pole Butterworth band-reject filter with central frequency frequency, and (3dB-point) band-
       width width.  The filter roll off at 6dB per octave (20dB per decade).

       The filter accepts the following options:

       frequency, f
           Set the filter's central frequency. Default is 3000.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.

   bass
       Boost or cut the bass (lower) frequencies of the audio using a two-pole shelving filter with  a  response
       similar to that of a standard hi-fi's tone-controls. This is also known as shelving equalisation (EQ).

       The filter accepts the following options:

       gain, g
           Give  the  gain  at 0 Hz. Its useful range is about -20 (for a large cut) to +20 (for a large boost).
           Beware of clipping when using a positive gain.

       frequency, f
           Set the filter's central frequency and so can be used to extend or reduce the frequency range  to  be
           boosted or cut.  The default value is 100 Hz.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Determine how steep is the filter's shelf transition.

   biquad
       Apply a biquad IIR filter with the given coefficients.  Where b0, b1, b2 and a0, a1, a2 are the numerator
       and denominator coefficients respectively.

   bs2b
       Bauer stereo to binaural transformation, which improves headphone listening of stereo audio records.

       It accepts the following parameters:

       profile
           Pre-defined crossfeed level.

           default
               Default level (fcut=700, feed=50).

           cmoy
               Chu Moy circuit (fcut=700, feed=60).

           jmeier
               Jan Meier circuit (fcut=650, feed=95).

       fcut
           Cut frequency (in Hz).

       feed
           Feed level (in Hz).

   channelmap
       Remap input channels to new locations.

       It accepts the following parameters:

       channel_layout
           The channel layout of the output stream.

       map Map  channels  from  input  to  output. The argument is a '|'-separated list of mappings, each in the
           "in_channel-out_channel" or in_channel form. in_channel can be either the name of the  input  channel
           (e.g.  FL  for  front left) or its index in the input channel layout.  out_channel is the name of the
           output channel or its index in the output channel layout. If out_channel is  not  given  then  it  is
           implicitly an index, starting with zero and increasing by one for each mapping.

       If  no  mapping  is present, the filter will implicitly map input channels to output channels, preserving
       indices.

       For example, assuming a 5.1+downmix input MOV file,

               ffmpeg -i in.mov -filter 'channelmap=map=DL-FL|DR-FR' out.wav

       will create an output WAV file tagged as stereo from the downmix channels of the input.

       To fix a 5.1 WAV improperly encoded in AAC's native channel order

               ffmpeg -i in.wav -filter 'channelmap=1|2|0|5|3|4:5.1' out.wav

   channelsplit
       Split each channel from an input audio stream into a separate output stream.

       It accepts the following parameters:

       channel_layout
           The channel layout of the input stream. The default is "stereo".

       For example, assuming a stereo input MP3 file,

               ffmpeg -i in.mp3 -filter_complex channelsplit out.mkv

       will create an output Matroska file with two audio streams, one containing only the left channel and  the
       other the right channel.

       Split a 5.1 WAV file into per-channel files:

               ffmpeg -i in.wav -filter_complex
               'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
               -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
               front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
               side_right.wav

   chorus
       Add a chorus effect to the audio.

       Can make a single vocal sound like a chorus, but can also be applied to instrumentation.

       Chorus  resembles  an  echo  effect with a short delay, but whereas with echo the delay is constant, with
       chorus, it is varied using using sinusoidal or triangular modulation.  The modulation depth  defines  the
       range  the modulated delay is played before or after the delay. Hence the delayed sound will sound slower
       or faster, that is the delayed sound tuned around the original one, like in a chorus  where  some  vocals
       are slightly off key.

       It accepts the following parameters:

       in_gain
           Set input gain. Default is 0.4.

       out_gain
           Set output gain. Default is 0.4.

       delays
           Set delays. A typical delay is around 40ms to 60ms.

       decays
           Set decays.

       speeds
           Set speeds.

       depths
           Set depths.

       Examples

       •   A single delay:

                   chorus=0.7:0.9:55:0.4:0.25:2

       •   Two delays:

                   chorus=0.6:0.9:50|60:0.4|0.32:0.25|0.4:2|1.3

       •   Fuller sounding chorus with three delays:

                   chorus=0.5:0.9:50|60|40:0.4|0.32|0.3:0.25|0.4|0.3:2|2.3|1.3

   compand
       Compress or expand the audio's dynamic range.

       It accepts the following parameters:

       attacks
       decays
           A list of times in seconds for each channel over which the instantaneous level of the input signal is
           averaged  to determine its volume. attacks refers to increase of volume and decays refers to decrease
           of volume. For most situations, the attack time (response to the  audio  getting  louder)  should  be
           shorter than the decay time, because the human ear is more sensitive to sudden loud audio than sudden
           soft  audio.  A typical value for attack is 0.3 seconds and a typical value for decay is 0.8 seconds.
           If specified number of attacks & decays is lower than number of channels, the last  set  attack/decay
           will be used for all remaining channels.

       points
           A  list  of points for the transfer function, specified in dB relative to the maximum possible signal
           amplitude. Each key points list must be defined using the following syntax:  "x0/y0|x1/y1|x2/y2|...."
           or "x0/y0 x1/y1 x2/y2 ...."

           The  input  values must be in strictly increasing order but the transfer function does not have to be
           monotonically rising. The point "0/0" is assumed but may  be  overridden  (by  "0/out-dBn").  Typical
           values for the transfer function are "-70/-70|-60/-20".

       soft-knee
           Set the curve radius in dB for all joints. It defaults to 0.01.

       gain
           Set  the  additional gain in dB to be applied at all points on the transfer function. This allows for
           easy adjustment of the overall gain.  It defaults to 0.

       volume
           Set an initial volume, in dB, to be assumed for each channel when filtering starts. This permits  the
           user  to  supply a nominal level initially, so that, for example, a very large gain is not applied to
           initial signal levels before the companding has begun to operate. A typical value for audio which  is
           initially quiet is -90 dB. It defaults to 0.

       delay
           Set  a  delay, in seconds. The input audio is analyzed immediately, but audio is delayed before being
           fed to the volume adjuster. Specifying a delay approximately equal to the attack/decay  times  allows
           the filter to effectively operate in predictive rather than reactive mode. It defaults to 0.

       Examples

       •   Make music with both quiet and loud passages suitable for listening to in a noisy environment:

                   compand=.3|.3:1|1:-90/-60|-60/-40|-40/-30|-20/-20:6:0:-90:0.2

           Another example for audio with whisper and explosion parts:

                   compand=0|0:1|1:-90/-900|-70/-70|-30/-9|0/-3:6:0:0:0

       •   A noise gate for when the noise is at a lower level than the signal:

                   compand=.1|.1:.2|.2:-900/-900|-50.1/-900|-50/-50:.01:0:-90:.1

       •   Here is another noise gate, this time for when the noise is at a higher level than the signal (making
           it, in some ways, similar to squelch):

                   compand=.1|.1:.1|.1:-45.1/-45.1|-45/-900|0/-900:.01:45:-90:.1

   dcshift
       Apply a DC shift to the audio.

       This  can  be  useful to remove a DC offset (caused perhaps by a hardware problem in the recording chain)
       from the audio. The effect of a DC offset is reduced headroom and hence volume. The astats filter can  be
       used to determine if a signal has a DC offset.

       shift
           Set the DC shift, allowed range is [-1, 1]. It indicates the amount to shift the audio.

       limitergain
           Optional.  It  should  have  a  value  much  less  than  1 (e.g. 0.05 or 0.02) and is used to prevent
           clipping.

   dynaudnorm
       Dynamic Audio Normalizer.

       This filter applies a certain amount of gain to the input audio in order to bring its peak magnitude to a
       target level (e.g. 0 dBFS). However, in contrast to more "simple" normalization algorithms,  the  Dynamic
       Audio  Normalizer  *dynamically* re-adjusts the gain factor to the input audio.  This allows for applying
       extra gain to the "quiet" sections of the  audio  while  avoiding  distortions  or  clipping  the  "loud"
       sections.  In  other  words:  The  Dynamic  Audio Normalizer will "even out" the volume of quiet and loud
       sections, in the sense that the volume of each section  is  brought  to  the  same  target  level.  Note,
       however,  that  the  Dynamic  Audio  Normalizer  achieves  this  goal  *without*  applying "dynamic range
       compressing". It will retain 100% of the dynamic range *within* each section of the audio file.

       f   Set the frame length in milliseconds. In  range  from  10  to  8000  milliseconds.   Default  is  500
           milliseconds.  The Dynamic Audio Normalizer processes the input audio in small chunks, referred to as
           frames.  This  is  required,  because a peak magnitude has no meaning for just a single sample value.
           Instead, we need to determine the peak magnitude for a contiguous sequence of sample values. While  a
           "standard"  normalizer  would  simply  use the peak magnitude of the complete file, the Dynamic Audio
           Normalizer determines the peak magnitude individually for each  frame.  The  length  of  a  frame  is
           specified  in  milliseconds.  By  default,  the  Dynamic  Audio Normalizer uses a frame length of 500
           milliseconds, which has been found to give good results with most files.  Note that the  exact  frame
           length,  in  number  of  samples, will be determined automatically, based on the sampling rate of the
           individual input audio file.

       g   Set the Gaussian filter window size. In range from 3 to 301, must  be  odd  number.  Default  is  31.
           Probably  the  most  important  parameter of the Dynamic Audio Normalizer is the "window size" of the
           Gaussian smoothing filter. The filter's window size is  specified  in  frames,  centered  around  the
           current  frame.  For  the  sake  of simplicity, this must be an odd number. Consequently, the default
           value of 31 takes into account the current frame, as well as the  15  preceding  frames  and  the  15
           subsequent frames. Using a larger window results in a stronger smoothing effect and thus in less gain
           variation,  i.e.  slower  gain  adaptation.  Conversely,  using  a smaller window results in a weaker
           smoothing effect and thus in more gain variation, i.e. faster gain adaptation.  In other  words,  the
           more  you increase this value, the more the Dynamic Audio Normalizer will behave like a "traditional"
           normalization filter. On the contrary, the more you decrease this value, the more the  Dynamic  Audio
           Normalizer will behave like a dynamic range compressor.

       p   Set  the target peak value. This specifies the highest permissible magnitude level for the normalized
           audio input. This filter will try to approach the target peak magnitude as closely as  possible,  but
           at  the same time it also makes sure that the normalized signal will never exceed the peak magnitude.
           A frame's maximum local gain factor is imposed directly by the target  peak  magnitude.  The  default
           value is 0.95 and thus leaves a headroom of 5%*.  It is not recommended to go above this value.

       m   Set  the  maximum  gain  factor.  In  range  from  1.0  to 100.0. Default is 10.0.  The Dynamic Audio
           Normalizer determines the maximum possible (local) gain factor for each input frame, i.e. the maximum
           gain factor that does not result in clipping or distortion. The maximum gain factor is determined  by
           the  frame's  highest magnitude sample. However, the Dynamic Audio Normalizer additionally bounds the
           frame's maximum gain factor by a predetermined (global) maximum gain factor. This is done in order to
           avoid excessive gain factors in "silent" or almost silent frames. By default, the maximum gain factor
           is 10.0, For most inputs the default value should be sufficient and it usually is not recommended  to
           increase  this  value.  Though,  for  input  with  an  extremely  low overall volume level, it may be
           necessary to allow even higher gain factors. Note, however, that the Dynamic  Audio  Normalizer  does
           not  simply apply a "hard" threshold (i.e. cut off values above the threshold).  Instead, a "sigmoid"
           threshold function will be applied. This way, the gain factors will smoothly approach  the  threshold
           value, but never exceed that value.

       r   Set  the  target  RMS.  In range from 0.0 to 1.0. Default is 0.0 - disabled.  By default, the Dynamic
           Audio Normalizer performs "peak" normalization.  This means that the maximum local  gain  factor  for
           each  frame  is  defined (only) by the frame's highest magnitude sample. This way, the samples can be
           amplified as much as possible without exceeding the maximum  signal  level,  i.e.  without  clipping.
           Optionally,  however,  the  Dynamic Audio Normalizer can also take into account the frame's root mean
           square, abbreviated RMS. In electrical engineering, the RMS is commonly used to determine  the  power
           of  a  time-varying  signal. It is therefore considered that the RMS is a better approximation of the
           "perceived loudness" than just looking at the signal's peak magnitude. Consequently, by adjusting all
           frames to a constant RMS value, a uniform "perceived loudness" can be established. If  a  target  RMS
           value  has  been specified, a frame's local gain factor is defined as the factor that would result in
           exactly that RMS value.  Note, however, that the maximum local gain factor is still restricted by the
           frame's highest magnitude sample, in order to prevent clipping.

       n   Enable channels coupling. By default is enabled.  By  default,  the  Dynamic  Audio  Normalizer  will
           amplify  all  channels  by  the  same  amount. This means the same gain factor will be applied to all
           channels, i.e.  the maximum possible gain factor is determined by the "loudest" channel.  However, in
           some recordings, it may happen that the volume of the different channels is uneven, e.g. one  channel
           may be "quieter" than the other one(s).  In this case, this option can be used to disable the channel
           coupling. This way, the gain factor will be determined independently for each channel, depending only
           on  the  individual channel's highest magnitude sample. This allows for harmonizing the volume of the
           different channels.

       c   Enable DC bias correction. By default is disabled.  An  audio  signal  (in  the  time  domain)  is  a
           sequence  of  sample  values.  In the Dynamic Audio Normalizer these sample values are represented in
           the -1.0 to 1.0 range, regardless of the original  input  format.  Normally,  the  audio  signal,  or
           "waveform",  should  be centered around the zero point.  That means if we calculate the mean value of
           all samples in a file, or in a single frame, then the result should be 0.0 or at least very close  to
           that  value.  If,  however,  there  is  a significant deviation of the mean value from 0.0, in either
           positive or negative direction, this is referred to as a DC bias or DC offset. Since  a  DC  bias  is
           clearly undesirable, the Dynamic Audio Normalizer provides optional DC bias correction.  With DC bias
           correction  enabled,  the  Dynamic Audio Normalizer will determine the mean value, or "DC correction"
           offset, of each input frame and subtract that value from all  of  the  frame's  sample  values  which
           ensures  those  samples  are  centered  around 0.0 again. Also, in order to avoid "gaps" at the frame
           boundaries, the DC correction offset  values  will  be  interpolated  smoothly  between  neighbouring
           frames.

       b   Enable  alternative  boundary  mode. By default is disabled.  The Dynamic Audio Normalizer takes into
           account a certain neighbourhood around each frame. This includes the preceding frames as well as  the
           subsequent  frames. However, for the "boundary" frames, located at the very beginning and at the very
           end of the audio file, not all neighbouring frames are available. In particular, for  the  first  few
           frames in the audio file, the preceding frames are not known. And, similarly, for the last few frames
           in  the audio file, the subsequent frames are not known. Thus, the question arises which gain factors
           should be assumed for the missing frames in the  "boundary"  region.  The  Dynamic  Audio  Normalizer
           implements  two modes to deal with this situation. The default boundary mode assumes a gain factor of
           exactly 1.0 for the missing frames, resulting in a smooth "fade in" and "fade out" at  the  beginning
           and at the end of the input, respectively.

       s   Set  the  compress  factor. In range from 0.0 to 30.0. Default is 0.0.  By default, the Dynamic Audio
           Normalizer does not apply "traditional" compression. This means that signal peaks will not be  pruned
           and  thus  the  full dynamic range will be retained within each local neighbourhood. However, in some
           cases it may be desirable to combine the Dynamic Audio Normalizer's normalization  algorithm  with  a
           more  "traditional" compression.  For this purpose, the Dynamic Audio Normalizer provides an optional
           compression (thresholding) function. If (and only if) the compression feature is enabled,  all  input
           frames  will  be  processed  by  a  soft knee thresholding function prior to the actual normalization
           process. Put simply, the thresholding function is going to prune all samples whose magnitude  exceeds
           a  certain  threshold  value.   However,  the  Dynamic Audio Normalizer does not simply apply a fixed
           threshold value. Instead, the threshold value  will  be  adjusted  for  each  individual  frame.   In
           general, smaller parameters result in stronger compression, and vice versa.  Values below 3.0 are not
           recommended, because audible distortion may appear.

   earwax
       Make audio easier to listen to on headphones.

       This  filter  adds  `cues'  to  44.1kHz  stereo  (i.e. audio CD format) audio so that when listened to on
       headphones the stereo image is moved from inside your head (standard for headphones) to  outside  and  in
       front of the listener (standard for speakers).

       Ported from SoX.

   equalizer
       Apply  a  two-pole  peaking  equalisation (EQ) filter. With this filter, the signal-level at and around a
       selected frequency can be increased or decreased, whilst (unlike bandpass and bandreject filters) that at
       all other frequencies is unchanged.

       In order to produce complex equalisation curves, this filter can be given  several  times,  each  with  a
       different central frequency.

       The filter accepts the following options:

       frequency, f
           Set the filter's central frequency in Hz.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.

       gain, g
           Set the required gain or attenuation in dB.  Beware of clipping when using a positive gain.

       Examples

       •   Attenuate 10 dB at 1000 Hz, with a bandwidth of 200 Hz:

                   equalizer=f=1000:width_type=h:width=200:g=-10

       •   Apply 2 dB gain at 1000 Hz with Q 1 and attenuate 5 dB at 100 Hz with Q 2:

                   equalizer=f=1000:width_type=q:width=1:g=2,equalizer=f=100:width_type=q:width=2:g=-5

   flanger
       Apply a flanging effect to the audio.

       The filter accepts the following options:

       delay
           Set base delay in milliseconds. Range from 0 to 30. Default value is 0.

       depth
           Set added swep delay in milliseconds. Range from 0 to 10. Default value is 2.

       regen
           Set percentage regeneration (delayed signal feedback). Range from -95 to 95.  Default value is 0.

       width
           Set percentage of delayed signal mixed with original. Range from 0 to 100.  Default value is 71.

       speed
           Set sweeps per second (Hz). Range from 0.1 to 10. Default value is 0.5.

       shape
           Set swept wave shape, can be triangular or sinusoidal.  Default value is sinusoidal.

       phase
           Set swept wave percentage-shift for multi channel. Range from 0 to 100.  Default value is 25.

       interp
           Set delay-line interpolation, linear or quadratic.  Default is linear.

   highpass
       Apply  a high-pass filter with 3dB point frequency.  The filter can be either single-pole, or double-pole
       (the default).  The filter roll off at 6dB per pole per octave (20dB per pole per decade).

       The filter accepts the following options:

       frequency, f
           Set frequency in Hz. Default is 3000.

       poles, p
           Set number of poles. Default is 2.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify the band-width of a filter in width_type units.  Applies only  to  double-pole  filter.   The
           default is 0.707q and gives a Butterworth response.

   join
       Join multiple input streams into one multi-channel stream.

       It accepts the following parameters:

       inputs
           The number of input streams. It defaults to 2.

       channel_layout
           The desired output channel layout. It defaults to stereo.

       map Map  channels  from  inputs  to output. The argument is a '|'-separated list of mappings, each in the
           "input_idx.in_channel-out_channel" form.  input_idx  is  the  0-based  index  of  the  input  stream.
           in_channel  can  be either the name of the input channel (e.g. FL for front left) or its index in the
           specified input stream. out_channel is the name of the output channel.

       The filter will attempt to guess the mappings when they are not specified explicitly. It does so by first
       trying to find an unused matching input channel and if  that  fails  it  picks  the  first  unused  input
       channel.

       Join 3 inputs (with properly set channel layouts):

               ffmpeg -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT

       Build a 5.1 output from 6 single-channel streams:

               ffmpeg -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
               'join=inputs=6:channel_layout=5.1:map=0.0-FL|1.0-FR|2.0-FC|3.0-SL|4.0-SR|5.0-LFE'
               out

   ladspa
       Load a LADSPA (Linux Audio Developer's Simple Plugin API) plugin.

       To enable compilation of this filter you need to configure FFmpeg with "--enable-ladspa".

       file, f
           Specifies  the  name  of  LADSPA  plugin  library to load. If the environment variable LADSPA_PATH is
           defined, the LADSPA plugin is searched in  each  one  of  the  directories  specified  by  the  colon
           separated  list  in  LADSPA_PATH,  otherwise  in  the standard LADSPA paths, which are in this order:
           HOME/.ladspa/lib/, /usr/local/lib/ladspa/, /usr/lib/ladspa/.

       plugin, p
           Specifies the plugin within the library. Some libraries contain only one plugin, but  others  contain
           many of them. If this is not set filter will list all available plugins within the specified library.

       controls, c
           Set  the  '|'  separated list of controls which are zero or more floating point values that determine
           the behavior of the loaded plugin (for example delay,  threshold  or  gain).   Controls  need  to  be
           defined  using the following syntax: c0=value0|c1=value1|c2=value2|..., where valuei is the value set
           on the i-th control.  If controls is set to "help", all available controls and their valid ranges are
           printed.

       sample_rate, s
           Specify the sample rate, default to 44100. Only used if plugin have zero inputs.

       nb_samples, n
           Set the number of samples per channel per each output frame, default is 1024.  Only  used  if  plugin
           have zero inputs.

       duration, d
           Set  the  minimum duration of the sourced audio. See the Time duration section in the ffmpeg-utils(1)
           manual for the accepted syntax.  Note that the resulting duration may be greater than  the  specified
           duration,  as the generated audio is always cut at the end of a complete frame.  If not specified, or
           the expressed duration is negative, the audio is supposed to be  generated  forever.   Only  used  if
           plugin have zero inputs.

       Examples

       •   List all available plugins within amp (LADSPA example plugin) library:

                   ladspa=file=amp

       •   List all available controls and their valid ranges for "vcf_notch" plugin from "VCF" library:

                   ladspa=f=vcf:p=vcf_notch:c=help

       •   Simulate low quality audio equipment using "Computer Music Toolkit" (CMT) plugin library:

                   ladspa=file=cmt:plugin=lofi:controls=c0=22|c1=12|c2=12

       •   Add reverberation to the audio using TAP-plugins (Tom's Audio Processing plugins):

                   ladspa=file=tap_reverb:tap_reverb

       •   Generate white noise, with 0.2 amplitude:

                   ladspa=file=cmt:noise_source_white:c=c0=.2

       •   Generate  20  bpm  clicks using plugin "C* Click - Metronome" from the "C* Audio Plugin Suite" (CAPS)
           library:

                   ladspa=file=caps:Click:c=c1=20'

       •   Apply "C* Eq10X2 - Stereo 10-band equaliser" effect:

                   ladspa=caps:Eq10X2:c=c0=-48|c9=-24|c3=12|c4=2

       Commands

       This filter supports the following commands:

       cN  Modify the N-th control value.

           If the specified value is not valid, it is ignored and prior one is kept.

   lowpass
       Apply a low-pass filter with 3dB point frequency.  The filter can be either  single-pole  or  double-pole
       (the default).  The filter roll off at 6dB per pole per octave (20dB per pole per decade).

       The filter accepts the following options:

       frequency, f
           Set frequency in Hz. Default is 500.

       poles, p
           Set number of poles. Default is 2.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Specify  the  band-width  of  a filter in width_type units.  Applies only to double-pole filter.  The
           default is 0.707q and gives a Butterworth response.

   pan
       Mix channels with specific gain levels. The filter accepts the output channel layout followed by a set of
       channels definitions.

       This filter is also designed to efficiently remap the channels of an audio stream.

       The filter accepts parameters of the form: "l|outdef|outdef|..."

       l   output channel layout or number of channels

       outdef
           output channel specification, of the form: "out_name=[gain*]in_name[+[gain*]in_name...]"

       out_name
           output channel to define, either a channel name (FL, FR, etc.) or a channel number (c0, c1, etc.)

       gain
           multiplicative coefficient for the channel, 1 leaving the volume unchanged

       in_name
           input channel to use, see out_name for details; it is not possible to mix named  and  numbered  input
           channels

       If  the  `=' in a channel specification is replaced by `<', then the gains for that specification will be
       renormalized so that the total is 1, thus avoiding clipping noise.

       Mixing examples

       For example, if you want to down-mix from stereo to mono, but with a bigger factor for the left channel:

               pan=1c|c0=0.9*c0+0.1*c1

       A customized down-mix to stereo that works automatically for 3-, 4-, 5- and 7-channels surround:

               pan=stereo| FL < FL + 0.5*FC + 0.6*BL + 0.6*SL | FR < FR + 0.5*FC + 0.6*BR + 0.6*SR

       Note that ffmpeg integrates a default down-mix (and up-mix) system that should be  preferred  (see  "-ac"
       option) unless you have very specific needs.

       Remapping examples

       The channel remapping will be effective if, and only if:

       *<gain coefficients are zeroes or ones,>
       *<only one input per channel output,>

       If all these conditions are satisfied, the filter will notify the user ("Pure channel mapping detected"),
       and use an optimized and lossless method to do the remapping.

       For example, if you have a 5.1 source and want a stereo audio stream by dropping the extra channels:

               pan="stereo| c0=FL | c1=FR"

       Given the same source, you can also switch front left and front right channels and keep the input channel
       layout:

               pan="5.1| c0=c1 | c1=c0 | c2=c2 | c3=c3 | c4=c4 | c5=c5"

       If  the  input  is  a stereo audio stream, you can mute the front left channel (and still keep the stereo
       channel layout) with:

               pan="stereo|c1=c1"

       Still with a stereo audio stream input, you can copy the right channel in both front left and right:

               pan="stereo| c0=FR | c1=FR"

   replaygain
       ReplayGain scanner filter. This filter takes an audio stream as an input and outputs  it  unchanged.   At
       end of filtering it displays "track_gain" and "track_peak".

   resample
       Convert the audio sample format, sample rate and channel layout. It is not meant to be used directly.

   sidechaincompress
       This  filter  acts  like  normal  compressor but has the ability to compress detected signal using second
       input signal.  It needs two input streams and returns one output stream.   First  input  stream  will  be
       processed depending on second stream signal.  The filtered signal then can be filtered with other filters
       in later stages of processing. See pan and amerge filter.

       The filter accepts the following options:

       threshold
           If  a  signal  of  second  stream  raises above this level it will affect the gain reduction of first
           stream.  By default is 0.125. Range is between 0.00097563 and 1.

       ratio
           Set a ratio about which the signal is reduced. 1:2 means that if  the  level  raised  4dB  above  the
           threshold, it will be only 2dB above after the reduction.  Default is 2. Range is between 1 and 20.

       attack
           Amount  of  milliseconds  the  signal  has  to rise above the threshold before gain reduction starts.
           Default is 20. Range is between 0.01 and 2000.

       release
           Amount of milliseconds the signal has to fall below  the  threshold  before  reduction  is  decreased
           again. Default is 250. Range is between 0.01 and 9000.

       makeup
           Set  the amount by how much signal will be amplified after processing.  Default is 2. Range is from 1
           and 64.

       knee
           Curve the sharp knee around the threshold to enter gain reduction more softly.  Default  is  2.82843.
           Range is between 1 and 8.

       link
           Choose  if  the  "average"  level  between all channels of side-chain stream or the louder("maximum")
           channel of side-chain stream affects the reduction. Default is "average".

       detection
           Should the exact signal be taken in case of "peak" or an RMS one in case of "rms". Default  is  "rms"
           which is mainly smoother.

       Examples

       •   Full  ffmpeg example taking 2 audio inputs, 1st input to be compressed depending on the signal of 2nd
           input and later compressed signal to be merged with 2nd input:

                   ffmpeg -i main.flac -i sidechain.flac -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress[compr];[compr][mix]amerge"

   silencedetect
       Detect silence in an audio stream.

       This filter logs a message when it detects that the input audio volume  is  less  or  equal  to  a  noise
       tolerance value for a duration greater or equal to the minimum detected noise duration.

       The printed times and duration are expressed in seconds.

       The filter accepts the following options:

       duration, d
           Set silence duration until notification (default is 2 seconds).

       noise, n
           Set  noise  tolerance.  Can  be  specified in dB (in case "dB" is appended to the specified value) or
           amplitude ratio. Default is -60dB, or 0.001.

       Examples

       •   Detect 5 seconds of silence with -50dB noise tolerance:

                   silencedetect=n=-50dB:d=5

       •   Complete example with ffmpeg to detect silence with 0.0001 noise tolerance in silence.mp3:

                   ffmpeg -i silence.mp3 -af silencedetect=noise=0.0001 -f null -

   silenceremove
       Remove silence from the beginning, middle or end of the audio.

       The filter accepts the following options:

       start_periods
           This value is used to indicate if audio should be trimmed at beginning of the audio. A value of  zero
           indicates no silence should be trimmed from the beginning. When specifying a non-zero value, it trims
           audio  up  until  it  finds  non-silence. Normally, when trimming silence from beginning of audio the
           start_periods will be 1 but it can be increased to higher values to trim all  audio  up  to  specific
           count of non-silence periods.  Default value is 0.

       start_duration
           Specify  the  amount  of  time  that  non-silence must be detected before it stops trimming audio. By
           increasing the duration, bursts of noises can be treated as silence and trimmed off. Default value is
           0.

       start_threshold
           This indicates what sample value should be treated as silence. For digital audio, a value of 0 may be
           fine but for audio recorded from analog, you may wish to increase the value to account for background
           noise.  Can be specified in dB (in case "dB" is appended to the specified value) or amplitude  ratio.
           Default value is 0.

       stop_periods
           Set  the  count  for  trimming silence from the end of audio.  To remove silence from the middle of a
           file, specify a stop_periods that is negative. This value is then treated as a positive value and  is
           used  to  indicate  the  effect  should  restart  processing as specified by start_periods, making it
           suitable for removing periods of silence in the middle of the audio.  Default value is 0.

       stop_duration
           Specify a duration of silence that must exist before audio is not copied any more.  By  specifying  a
           higher duration, silence that is wanted can be left in the audio.  Default value is 0.

       stop_threshold
           This is the same as start_threshold but for trimming silence from the end of audio.  Can be specified
           in dB (in case "dB" is appended to the specified value) or amplitude ratio. Default value is 0.

       leave_silence
           This  indicate  that  stop_duration  length  of  audio should be left intact at the beginning of each
           period of silence.  For example, if you want to remove long pauses between words but do not  want  to
           remove the pauses completely. Default value is 0.

       Examples

       •   The  following  example  shows how this filter can be used to start a recording that does not contain
           the delay at the start which usually occurs between pressing the record button and the start  of  the
           performance:

                   silenceremove=1:5:0.02

   treble
       Boost  or  cut  treble  (upper) frequencies of the audio using a two-pole shelving filter with a response
       similar to that of a standard hi-fi's tone-controls. This is also known as shelving equalisation (EQ).

       The filter accepts the following options:

       gain, g
           Give the gain at whichever is the lower of ~22 kHz and the Nyquist frequency.  Its  useful  range  is
           about  -20  (for  a  large  cut) to +20 (for a large boost). Beware of clipping when using a positive
           gain.

       frequency, f
           Set the filter's central frequency and so can be used to extend or reduce the frequency range  to  be
           boosted or cut.  The default value is 3000 Hz.

       width_type
           Set method to specify band-width of filter.

           h   Hz

           q   Q-Factor

           o   octave

           s   slope

       width, w
           Determine how steep is the filter's shelf transition.

   volume
       Adjust the input audio volume.

       It accepts the following parameters:

       volume
           Set audio volume expression.

           Output values are clipped to the maximum value.

           The output audio volume is given by the relation:

                   <output_volume> = <volume> * <input_volume>

           The default value for volume is "1.0".

       precision
           This parameter represents the mathematical precision.

           It  determines  which input sample formats will be allowed, which affects the precision of the volume
           scaling.

           fixed
               8-bit fixed-point; this limits input sample format to U8, S16, and S32.

           float
               32-bit floating-point; this limits input sample format to FLT. (default)

           double
               64-bit floating-point; this limits input sample format to DBL.

       replaygain
           Choose the behaviour on encountering ReplayGain side data in input frames.

           drop
               Remove ReplayGain side data, ignoring its contents (the default).

           ignore
               Ignore ReplayGain side data, but leave it in the frame.

           track
               Prefer the track gain, if present.

           album
               Prefer the album gain, if present.

       replaygain_preamp
           Pre-amplification gain in dB to apply to the selected replaygain gain.

           Default value for replaygain_preamp is 0.0.

       eval
           Set when the volume expression is evaluated.

           It accepts the following values:

           once
               only evaluate expression once during the filter initialization, or when  the  volume  command  is
               sent

           frame
               evaluate expression for each incoming frame

           Default value is once.

       The volume expression can contain the following parameters.

       n   frame number (starting at zero)

       nb_channels
           number of channels

       nb_consumed_samples
           number of samples consumed by the filter

       nb_samples
           number of samples in the current frame

       pos original frame position in the file

       pts frame PTS

       sample_rate
           sample rate

       startpts
           PTS at start of stream

       startt
           time at start of stream

       t   frame time

       tb  timestamp timebase

       volume
           last set volume value

       Note  that  when  eval  is  set  to  once  only the sample_rate and tb variables are available, all other
       variables will evaluate to NAN.

       Commands

       This filter supports the following commands:

       volume
           Modify the volume expression.  The command accepts the same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

       replaygain_noclip
           Prevent clipping by limiting the gain applied.

           Default value for replaygain_noclip is 1.

       Examples

       •   Halve the input audio volume:

                   volume=volume=0.5
                   volume=volume=1/2
                   volume=volume=-6.0206dB

           In all the above example the named key for volume can be omitted, for example like in:

                   volume=0.5

       •   Increase input audio power by 6 decibels using fixed-point precision:

                   volume=volume=6dB:precision=fixed

       •   Fade volume after time 10 with an annihilation period of 5 seconds:

                   volume='if(lt(t,10),1,max(1-(t-10)/5,0))':eval=frame

   volumedetect
       Detect the volume of the input video.

       The filter has no parameters. The input is not modified. Statistics about the volume will be  printed  in
       the log when the input stream end is reached.

       In  particular  it  will show the mean volume (root mean square), maximum volume (on a per-sample basis),
       and the beginning of a histogram of the registered volume values (from the maximum value to  a  cumulated
       1/1000 of the samples).

       All volumes are in decibels relative to the maximum PCM value.

       Examples

       Here is an excerpt of the output:

               [Parsed_volumedetect_0  0xa23120] mean_volume: -27 dB
               [Parsed_volumedetect_0  0xa23120] max_volume: -4 dB
               [Parsed_volumedetect_0  0xa23120] histogram_4db: 6
               [Parsed_volumedetect_0  0xa23120] histogram_5db: 62
               [Parsed_volumedetect_0  0xa23120] histogram_6db: 286
               [Parsed_volumedetect_0  0xa23120] histogram_7db: 1042
               [Parsed_volumedetect_0  0xa23120] histogram_8db: 2551
               [Parsed_volumedetect_0  0xa23120] histogram_9db: 4609
               [Parsed_volumedetect_0  0xa23120] histogram_10db: 8409

       It means that:

       •   The mean square energy is approximately -27 dB, or 10^-2.7.

       •   The largest sample is at -4 dB, or more precisely between -4 dB and -5 dB.

       •   There are 6 samples at -4 dB, 62 at -5 dB, 286 at -6 dB, etc.

       In  other  words,  raising  the  volume  by +4 dB does not cause any clipping, raising it by +5 dB causes
       clipping for 6 samples, etc.

AUDIO SOURCES

       Below is a description of the currently available audio sources.

   abuffer
       Buffer audio frames, and make them available to the filter chain.

       This source is mainly intended for a programmatic use, in particular through  the  interface  defined  in
       libavfilter/asrc_abuffer.h.

       It accepts the following parameters:

       time_base
           The  timebase  which  will  be used for timestamps of submitted frames. It must be either a floating-
           point number or in numerator/denominator form.

       sample_rate
           The sample rate of the incoming audio buffers.

       sample_fmt
           The sample format of the incoming audio buffers.  Either a sample format name  or  its  corresponding
           integer representation from the enum AVSampleFormat in libavutil/samplefmt.h

       channel_layout
           The   channel   layout   of   the  incoming  audio  buffers.   Either  a  channel  layout  name  from
           channel_layout_map in libavutil/channel_layout.c or its corresponding integer representation from the
           AV_CH_LAYOUT_* macros in libavutil/channel_layout.h

       channels
           The number of channels of the incoming audio  buffers.   If  both  channels  and  channel_layout  are
           specified, then they must be consistent.

       Examples

               abuffer=sample_rate=44100:sample_fmt=s16p:channel_layout=stereo

       will  instruct  the source to accept planar 16bit signed stereo at 44100Hz.  Since the sample format with
       name "s16p" corresponds to the number 6 and the "stereo" channel layout corresponds  to  the  value  0x3,
       this is equivalent to:

               abuffer=sample_rate=44100:sample_fmt=6:channel_layout=0x3

   aevalsrc
       Generate an audio signal specified by an expression.

       This source accepts in input one or more expressions (one for each channel), which are evaluated and used
       to generate a corresponding audio signal.

       This source accepts the following options:

       exprs
           Set  the  '|'-separated expressions list for each separate channel. In case the channel_layout option
           is not specified, the selected  channel  layout  depends  on  the  number  of  provided  expressions.
           Otherwise the last specified expression is applied to the remaining output channels.

       channel_layout, c
           Set the channel layout. The number of channels in the specified layout must be equal to the number of
           specified expressions.

       duration, d
           Set  the  minimum duration of the sourced audio. See the Time duration section in the ffmpeg-utils(1)
           manual for the accepted syntax.  Note that the resulting duration may be greater than  the  specified
           duration, as the generated audio is always cut at the end of a complete frame.

           If  not  specified,  or  the  expressed  duration  is negative, the audio is supposed to be generated
           forever.

       nb_samples, n
           Set the number of samples per channel per each output frame, default to 1024.

       sample_rate, s
           Specify the sample rate, default to 44100.

       Each expression in exprs can contain the following constants:

       n   number of the evaluated sample, starting from 0

       t   time of the evaluated sample expressed in seconds, starting from 0

       s   sample rate

       Examples

       •   Generate silence:

                   aevalsrc=0

       •   Generate a sin signal with frequency of 440 Hz, set sample rate to 8000 Hz:

                   aevalsrc="sin(440*2*PI*t):s=8000"

       •   Generate a two channels signal, specify the channel layout (Front Center + Back Center) explicitly:

                   aevalsrc="sin(420*2*PI*t)|cos(430*2*PI*t):c=FC|BC"

       •   Generate white noise:

                   aevalsrc="-2+random(0)"

       •   Generate an amplitude modulated signal:

                   aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"

       •   Generate 2.5 Hz binaural beats on a 360 Hz carrier:

                   aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) | 0.1*sin(2*PI*(360+2.5/2)*t)"

   anullsrc
       The null audio source, return unprocessed audio frames. It is mainly useful  as  a  template  and  to  be
       employed  in  analysis  /  debugging tools, or as the source for filters which ignore the input data (for
       example the sox synth filter).

       This source accepts the following options:

       channel_layout, cl
           Specifies the channel layout, and can be either an integer or a string representing a channel layout.
           The default value of channel_layout is "stereo".

           Check the channel_layout_map definition in libavutil/channel_layout.c for the mapping between strings
           and channel layout values.

       sample_rate, r
           Specifies the sample rate, and defaults to 44100.

       nb_samples, n
           Set the number of samples per requested frames.

       Examples

       •   Set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.

                   anullsrc=r=48000:cl=4

       •   Do the same operation with a more obvious syntax:

                   anullsrc=r=48000:cl=mono

       All the parameters need to be explicitly defined.

   flite
       Synthesize a voice utterance using the libflite library.

       To enable compilation of this filter you need to configure FFmpeg with "--enable-libflite".

       Note that the flite library is not thread-safe.

       The filter accepts the following options:

       list_voices
           If set to 1, list the names of the available voices and exit immediately. Default value is 0.

       nb_samples, n
           Set the maximum number of samples per frame. Default value is 512.

       textfile
           Set the filename containing the text to speak.

       text
           Set the text to speak.

       voice, v
           Set the voice to use for the speech synthesis. Default value  is  "kal".  See  also  the  list_voices
           option.

       Examples

       •   Read from file speech.txt, and synthesize the text using the standard flite voice:

                   flite=textfile=speech.txt

       •   Read the specified text selecting the "slt" voice:

                   flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt

       •   Input text to ffmpeg:

                   ffmpeg -f lavfi -i flite=text='So fare thee well, poor devil of a Sub-Sub, whose commentator I am':voice=slt

       •   Make ffplay speak the specified text, using "flite" and the "lavfi" device:

                   ffplay -f lavfi flite=text='No more be grieved for which that thou hast done.'

       For more information about libflite, check: <http://www.speech.cs.cmu.edu/flite/>

   sine
       Generate an audio signal made of a sine wave with amplitude 1/8.

       The audio signal is bit-exact.

       The filter accepts the following options:

       frequency, f
           Set the carrier frequency. Default is 440 Hz.

       beep_factor, b
           Enable  a  periodic beep every second with frequency beep_factor times the carrier frequency. Default
           is 0, meaning the beep is disabled.

       sample_rate, r
           Specify the sample rate, default is 44100.

       duration, d
           Specify the duration of the generated audio stream.

       samples_per_frame
           Set the number of samples per output frame, default is 1024.

       Examples

       •   Generate a simple 440 Hz sine wave:

                   sine

       •   Generate a 220 Hz sine wave with a 880 Hz beep each second, for 5 seconds:

                   sine=220:4:d=5
                   sine=f=220:b=4:d=5
                   sine=frequency=220:beep_factor=4:duration=5

AUDIO SINKS

       Below is a description of the currently available audio sinks.

   abuffersink
       Buffer audio frames, and make them available to the end of filter chain.

       This sink is mainly intended for programmatic  use,  in  particular  through  the  interface  defined  in
       libavfilter/buffersink.h or the options system.

       It  accepts  a pointer to an AVABufferSinkContext structure, which defines the incoming buffers' formats,
       to be passed as the opaque parameter to "avfilter_init_filter" for initialization.

   anullsink
       Null audio sink; do absolutely nothing with the input audio. It is mainly useful as a  template  and  for
       use in analysis / debugging tools.

VIDEO FILTERS

       When   you   configure   your   FFmpeg  build,  you  can  disable  any  of  the  existing  filters  using
       "--disable-filters".  The configure output will show the video filters included in your build.

       Below is a description of the currently available video filters.

   alphaextract
       Extract the alpha component from the input as a grayscale video.  This  is  especially  useful  with  the
       alphamerge filter.

   alphamerge
       Add  or replace the alpha component of the primary input with the grayscale value of a second input. This
       is intended for use with alphaextract to allow the transmission or storage of frame sequences  that  have
       alpha in a format that doesn't support an alpha channel.

       For example, to reconstruct full frames from a normal YUV-encoded video and a separate video created with
       alphaextract, you might use:

               movie=in_alpha.mkv [alpha]; [in][alpha] alphamerge [out]

       Since  this  filter  is  designed  for reconstruction, it operates on frame sequences without considering
       timestamps, and terminates when either input reaches end of stream. This  will  cause  problems  if  your
       encoding  pipeline  drops  frames.  If  you're  trying to apply an image as an overlay to a video stream,
       consider the overlay filter instead.

   ass
       Same as the subtitles filter, except that it doesn't require libavcodec and libavformat to work.  On  the
       other hand, it is limited to ASS (Advanced Substation Alpha) subtitles files.

       This filter accepts the following option in addition to the common options from the subtitles filter:

       shaping
           Set the shaping engine

           Available values are:

           auto
               The default libass shaping engine, which is the best available.

           simple
               Fast, font-agnostic shaper that can do only substitutions

           complex
               Slower shaper using OpenType for substitutions and positioning

           The default is "auto".

   atadenoise
       Apply an Adaptive Temporal Averaging Denoiser to the video input.

       The filter accepts the following options:

       0a  Set threshold A for 1st plane. Default is 0.02.  Valid range is 0 to 0.3.

       0b  Set threshold B for 1st plane. Default is 0.04.  Valid range is 0 to 5.

       1a  Set threshold A for 2nd plane. Default is 0.02.  Valid range is 0 to 0.3.

       1b  Set threshold B for 2nd plane. Default is 0.04.  Valid range is 0 to 5.

       2a  Set threshold A for 3rd plane. Default is 0.02.  Valid range is 0 to 0.3.

       2b  Set threshold B for 3rd plane. Default is 0.04.  Valid range is 0 to 5.

           Threshold A is designed to react on abrupt changes in the input signal and threshold B is designed to
           react on continuous changes in the input signal.

       s   Set  number  of  frames filter will use for averaging. Default is 33. Must be odd number in range [5,
           129].

   bbox
       Compute the bounding box for the non-black pixels in the input frame luminance plane.

       This filter computes the bounding box containing all the pixels with a luminance value greater  than  the
       minimum allowed value.  The parameters describing the bounding box are printed on the filter log.

       The filter accepts the following option:

       min_val
           Set the minimal luminance value. Default is 16.

   blackdetect
       Detect  video  intervals that are (almost) completely black. Can be useful to detect chapter transitions,
       commercials, or invalid recordings. Output lines contains the time for the start, end and duration of the
       detected black interval expressed in seconds.

       In order to display the output lines, you need to set the loglevel at least to the AV_LOG_INFO value.

       The filter accepts the following options:

       black_min_duration, d
           Set the minimum detected black duration expressed in seconds. It  must  be  a  non-negative  floating
           point number.

           Default value is 2.0.

       picture_black_ratio_th, pic_th
           Set the threshold for considering a picture "black".  Express the minimum value for the ratio:

                   <nb_black_pixels> / <nb_pixels>

           for which a picture is considered black.  Default value is 0.98.

       pixel_black_th, pix_th
           Set the threshold for considering a pixel "black".

           The  threshold  expresses  the maximum pixel luminance value for which a pixel is considered "black".
           The provided value is scaled according to the following equation:

                   <absolute_threshold> = <luminance_minimum_value> + <pixel_black_th> * <luminance_range_size>

           luminance_range_size and luminance_minimum_value depend on the  input  video  format,  the  range  is
           [0-255] for YUV full-range formats and [16-235] for YUV non full-range formats.

           Default value is 0.10.

       The  following  example  sets  the  maximum  pixel threshold to the minimum value, and detects only black
       intervals of 2 or more seconds:

               blackdetect=d=2:pix_th=0.00

   blackframe
       Detect frames that are (almost) completely  black.  Can  be  useful  to  detect  chapter  transitions  or
       commercials. Output lines consist of the frame number of the detected frame, the percentage of blackness,
       the position in the file if known or -1 and the timestamp in seconds.

       In order to display the output lines, you need to set the loglevel at least to the AV_LOG_INFO value.

       It accepts the following parameters:

       amount
           The percentage of the pixels that have to be below the threshold; it defaults to 98.

       threshold, thresh
           The threshold below which a pixel value is considered black; it defaults to 32.

   blend, tblend
       Blend two video frames into each other.

       The "blend" filter takes two input streams and outputs one stream, the first input is the "top" layer and
       second input is "bottom" layer.  Output terminates when shortest input terminates.

       The  "tblend"  (time  blend)  filter takes two consecutive frames from one single stream, and outputs the
       result obtained by blending the new frame on top of the old frame.

       A description of the accepted options follows.

       c0_mode
       c1_mode
       c2_mode
       c3_mode
       all_mode
           Set blend mode for specific pixel component or all pixel components  in  case  of  all_mode.  Default
           value is "normal".

           Available values for component modes are:

           addition
           and
           average
           burn
           darken
           difference
           difference128
           divide
           dodge
           exclusion
           glow
           hardlight
           hardmix
           lighten
           linearlight
           multiply
           negation
           normal
           or
           overlay
           phoenix
           pinlight
           reflect
           screen
           softlight
           subtract
           vividlight
           xor
       c0_opacity
       c1_opacity
       c2_opacity
       c3_opacity
       all_opacity
           Set  blend  opacity for specific pixel component or all pixel components in case of all_opacity. Only
           used in combination with pixel component blend modes.

       c0_expr
       c1_expr
       c2_expr
       c3_expr
       all_expr
           Set blend expression for specific pixel component or all pixel components in case of  all_expr.  Note
           that related mode options will be ignored if those are set.

           The expressions can use the following variables:

           N   The sequential number of the filtered frame, starting from 0.

           X
           Y   the coordinates of the current sample

           W
           H   the width and height of currently filtered plane

           SW
           SH  Width  and  height  scale  depending on the currently filtered plane. It is the ratio between the
               corresponding luma plane number of pixels and the current  plane  ones.  E.g.  for  YUV4:2:0  the
               values are "1,1" for the luma plane, and "0.5,0.5" for chroma planes.

           T   Time of the current frame, expressed in seconds.

           TOP, A
               Value of pixel component at current location for first video frame (top layer).

           BOTTOM, B
               Value of pixel component at current location for second video frame (bottom layer).

       shortest
           Force  termination  when the shortest input terminates. Default is 0. This option is only defined for
           the "blend" filter.

       repeatlast
           Continue applying the last bottom frame after the end of the stream. A value of 0 disable the  filter
           after  the  last frame of the bottom layer is reached.  Default is 1. This option is only defined for
           the "blend" filter.

       Examples

       •   Apply transition from bottom layer to top layer in first 10 seconds:

                   blend=all_expr='A*(if(gte(T,10),1,T/10))+B*(1-(if(gte(T,10),1,T/10)))'

       •   Apply 1x1 checkerboard effect:

                   blend=all_expr='if(eq(mod(X,2),mod(Y,2)),A,B)'

       •   Apply uncover left effect:

                   blend=all_expr='if(gte(N*SW+X,W),A,B)'

       •   Apply uncover down effect:

                   blend=all_expr='if(gte(Y-N*SH,0),A,B)'

       •   Apply uncover up-left effect:

                   blend=all_expr='if(gte(T*SH*40+Y,H)*gte((T*40*SW+X)*W/H,W),A,B)'

       •   Display differences between the current and the previous frame:

                   tblend=all_mode=difference128

   boxblur
       Apply a boxblur algorithm to the input video.

       It accepts the following parameters:

       luma_radius, lr
       luma_power, lp
       chroma_radius, cr
       chroma_power, cp
       alpha_radius, ar
       alpha_power, ap

       A description of the accepted options follows.

       luma_radius, lr
       chroma_radius, cr
       alpha_radius, ar
           Set an expression for the box radius in pixels used for blurring the corresponding input plane.

           The radius value must be a non-negative number, and must  not  be  greater  than  the  value  of  the
           expression "min(w,h)/2" for the luma and alpha planes, and of "min(cw,ch)/2" for the chroma planes.

           Default value for luma_radius is "2". If not specified, chroma_radius and alpha_radius default to the
           corresponding value set for luma_radius.

           The expressions can contain the following constants:

           w
           h   The input width and height in pixels.

           cw
           ch  The input chroma image width and height in pixels.

           hsub
           vsub
               The horizontal and vertical chroma subsample values. For example, for the pixel format "yuv422p",
               hsub is 2 and vsub is 1.

       luma_power, lp
       chroma_power, cp
       alpha_power, ap
           Specify how many times the boxblur filter is applied to the corresponding plane.

           Default  value  for  luma_power  is  2. If not specified, chroma_power and alpha_power default to the
           corresponding value set for luma_power.

           A value of 0 will disable the effect.

       Examples

       •   Apply a boxblur filter with the luma, chroma, and alpha radii set to 2:

                   boxblur=luma_radius=2:luma_power=1
                   boxblur=2:1

       •   Set the luma radius to 2, and alpha and chroma radius to 0:

                   boxblur=2:1:cr=0:ar=0

       •   Set the luma and chroma radii to a fraction of the video dimension:

                   boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1

   codecview
       Visualize information exported by some codecs.

       Some codecs can export information through frames using side-data or other means. For example, some  MPEG
       based codecs export motion vectors through the export_mvs flag in the codec flags2 option.

       The filter accepts the following option:

       mv  Set motion vectors to visualize.

           Available flags for mv are:

           pf  forward predicted MVs of P-frames

           bf  forward predicted MVs of B-frames

           bb  backward predicted MVs of B-frames

       Examples

       •   Visualizes multi-directionals MVs from P and B-Frames using ffplay:

                   ffplay -flags2 +export_mvs input.mpg -vf codecview=mv=pf+bf+bb

   colorbalance
       Modify intensity of primary colors (red, green and blue) of input frames.

       The  filter  allows  an input frame to be adjusted in the shadows, midtones or highlights regions for the
       red-cyan, green-magenta or blue-yellow balance.

       A positive adjustment value shifts the balance towards the primary color, a negative  value  towards  the
       complementary color.

       The filter accepts the following options:

       rs
       gs
       bs  Adjust red, green and blue shadows (darkest pixels).

       rm
       gm
       bm  Adjust red, green and blue midtones (medium pixels).

       rh
       gh
       bh  Adjust red, green and blue highlights (brightest pixels).

           Allowed ranges for options are "[-1.0, 1.0]". Defaults are 0.

       Examples

       •   Add red color cast to shadows:

                   colorbalance=rs=.3

   colorkey
       RGB colorspace color keying.

       The filter accepts the following options:

       color
           The color which will be replaced with transparency.

       similarity
           Similarity percentage with the key color.

           0.01 matches only the exact key color, while 1.0 matches everything.

       blend
           Blend percentage.

           0.0 makes pixels either fully transparent, or not transparent at all.

           Higher  values  result  in  semi-transparent  pixels, with a higher transparency the more similar the
           pixels color is to the key color.

       Examples

       •   Make every green pixel in the input image transparent:

                   ffmpeg -i input.png -vf colorkey=green out.png

       •   Overlay a greenscreen-video on top of a static background image.

                   ffmpeg -i background.png -i video.mp4 -filter_complex "[1:v]colorkey=0x3BBD1E:0.3:0.2[ckout];[0:v][ckout]overlay[out]" -map "[out]" output.flv

   colorlevels
       Adjust video input frames using levels.

       The filter accepts the following options:

       rimin
       gimin
       bimin
       aimin
           Adjust red, green, blue and alpha input black point.  Allowed ranges for options are  "[-1.0,  1.0]".
           Defaults are 0.

       rimax
       gimax
       bimax
       aimax
           Adjust  red,  green, blue and alpha input white point.  Allowed ranges for options are "[-1.0, 1.0]".
           Defaults are 1.

           Input levels are used to lighten highlights (bright tones), darken shadows (dark tones),  change  the
           balance of bright and dark tones.

       romin
       gomin
       bomin
       aomin
           Adjust  red,  green,  blue  and alpha output black point.  Allowed ranges for options are "[0, 1.0]".
           Defaults are 0.

       romax
       gomax
       bomax
       aomax
           Adjust red, green, blue and alpha output white point.  Allowed ranges for  options  are  "[0,  1.0]".
           Defaults are 1.

           Output levels allows manual selection of a constrained output level range.

       Examples

       •   Make video output darker:

                   colorlevels=rimin=0.058:gimin=0.058:bimin=0.058

       •   Increase contrast:

                   colorlevels=rimin=0.039:gimin=0.039:bimin=0.039:rimax=0.96:gimax=0.96:bimax=0.96

       •   Make video output lighter:

                   colorlevels=rimax=0.902:gimax=0.902:bimax=0.902

       •   Increase brightness:

                   colorlevels=romin=0.5:gomin=0.5:bomin=0.5

   colorchannelmixer
       Adjust video input frames by re-mixing color channels.

       This  filter  modifies  a color channel by adding the values associated to the other channels of the same
       pixels. For example if the value to modify is red, the output value will be:

               <red>=<red>*<rr> + <blue>*<rb> + <green>*<rg> + <alpha>*<ra>

       The filter accepts the following options:

       rr
       rg
       rb
       ra  Adjust contribution of input red, green, blue and alpha channels for output red channel.  Default  is
           1 for rr, and 0 for rg, rb and ra.

       gr
       gg
       gb
       ga  Adjust  contribution  of input red, green, blue and alpha channels for output green channel.  Default
           is 1 for gg, and 0 for gr, gb and ga.

       br
       bg
       bb
       ba  Adjust contribution of input red, green, blue and alpha channels for output blue channel.  Default is
           1 for bb, and 0 for br, bg and ba.

       ar
       ag
       ab
       aa  Adjust contribution of input red, green, blue and alpha channels for output alpha  channel.   Default
           is 1 for aa, and 0 for ar, ag and ab.

           Allowed ranges for options are "[-2.0, 2.0]".

       Examples

       •   Convert source to grayscale:

                   colorchannelmixer=.3:.4:.3:0:.3:.4:.3:0:.3:.4:.3

       •   Simulate sepia tones:

                   colorchannelmixer=.393:.769:.189:0:.349:.686:.168:0:.272:.534:.131

   colormatrix
       Convert color matrix.

       The filter accepts the following options:

       src
       dst Specify the source and destination color matrix. Both values must be specified.

           The accepted values are:

           bt709
               BT.709

           bt601
               BT.601

           smpte240m
               SMPTE-240M

           fcc FCC

       For example to convert from BT.601 to SMPTE-240M, use the command:

               colormatrix=bt601:smpte240m

   copy
       Copy the input source unchanged to the output. This is mainly useful for testing purposes.

   crop
       Crop the input video to given dimensions.

       It accepts the following parameters:

       w, out_w
           The  width  of  the output video. It defaults to "iw".  This expression is evaluated only once during
           the filter configuration, or when the w or out_w command is sent.

       h, out_h
           The height of the output video. It defaults to "ih".  This expression is evaluated only  once  during
           the filter configuration, or when the h or out_h command is sent.

       x   The  horizontal  position,  in  the input video, of the left edge of the output video. It defaults to
           "(in_w-out_w)/2".  This expression is evaluated per-frame.

       y   The vertical position, in the input video, of the top edge of  the  output  video.   It  defaults  to
           "(in_h-out_h)/2".  This expression is evaluated per-frame.

       keep_aspect
           If  set  to 1 will force the output display aspect ratio to be the same of the input, by changing the
           output sample aspect ratio. It defaults to 0.

       The out_w, out_h, x, y parameters are expressions containing the following constants:

       x
       y   The computed values for x and y. They are evaluated for each new frame.

       in_w
       in_h
           The input width and height.

       iw
       ih  These are the same as in_w and in_h.

       out_w
       out_h
           The output (cropped) width and height.

       ow
       oh  These are the same as out_w and out_h.

       a   same as iw / ih

       sar input sample aspect ratio

       dar input display aspect ratio, it is the same as (iw / ih) * sar

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       n   The number of the input frame, starting from 0.

       pos the position in the file of the input frame, NAN if unknown

       t   The timestamp expressed in seconds. It's NAN if the input timestamp is unknown.

       The expression for out_w may depend on the value of out_h, and the expression for  out_h  may  depend  on
       out_w, but they cannot depend on x and y, as x and y are evaluated after out_w and out_h.

       The  x  and  y  parameters  specify the expressions for the position of the top-left corner of the output
       (non-cropped) area. They are evaluated for each frame. If  the  evaluated  value  is  not  valid,  it  is
       approximated to the nearest valid value.

       The expression for x may depend on y, and the expression for y may depend on x.

       Examples

       •   Crop area with size 100x100 at position (12,34).

                   crop=100:100:12:34

           Using named options, the example above becomes:

                   crop=w=100:h=100:x=12:y=34

       •   Crop the central input area with size 100x100:

                   crop=100:100

       •   Crop the central input area with size 2/3 of the input video:

                   crop=2/3*in_w:2/3*in_h

       •   Crop the input video central square:

                   crop=out_w=in_h
                   crop=in_h

       •   Delimit the rectangle with the top-left corner placed at position 100:100 and the right-bottom corner
           corresponding to the right-bottom corner of the input image.

                   crop=in_w-100:in_h-100:100:100

       •   Crop 10 pixels from the left and right borders, and 20 pixels from the top and bottom borders

                   crop=in_w-2*10:in_h-2*20

       •   Keep only the bottom right quarter of the input image:

                   crop=in_w/2:in_h/2:in_w/2:in_h/2

       •   Crop height for getting Greek harmony:

                   crop=in_w:1/PHI*in_w

       •   Apply trembling effect:

                   crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)

       •   Apply erratic camera effect depending on timestamp:

                   crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"

       •   Set x depending on the value of y:

                   crop=in_w/2:in_h/2:y:10+10*sin(n/10)

       Commands

       This filter supports the following commands:

       w, out_w
       h, out_h
       x
       y   Set  width/height  of  the output video and the horizontal/vertical position in the input video.  The
           command accepts the same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

   cropdetect
       Auto-detect the crop size.

       It calculates the necessary cropping parameters and prints the recommended  parameters  via  the  logging
       system. The detected dimensions correspond to the non-black area of the input video.

       It accepts the following parameters:

       limit
           Set  higher  black  value threshold, which can be optionally specified from nothing (0) to everything
           (255 for 8bit based formats). An intensity value greater to the set value is considered non-black. It
           defaults to 24.  You can also specify a value between 0.0 and 1.0 which will be scaled  depending  on
           the bitdepth of the pixel format.

       round
           The  value  which  the  width/height  should  be  divisible  by.  It  defaults  to  16. The offset is
           automatically adjusted to center the video. Use 2 to get  only  even  dimensions  (needed  for  4:2:2
           video). 16 is best when encoding to most video codecs.

       reset_count, reset
           Set  the  counter that determines after how many frames cropdetect will reset the previously detected
           largest video area and start over to detect the current optimal crop area. Default value is 0.

           This can be useful when channel logos distort the video area. 0 indicates 'never reset', and  returns
           the largest area encountered during playback.

   curves
       Apply color adjustments using curves.

       This filter is similar to the Adobe Photoshop and GIMP curves tools. Each component (red, green and blue)
       has  its  values defined by N key points tied from each other using a smooth curve. The x-axis represents
       the pixel values from the input frame, and the y-axis the new pixel values  to  be  set  for  the  output
       frame.

       By  default, a component curve is defined by the two points (0;0) and (1;1). This creates a straight line
       where each original pixel value is "adjusted" to its own value, which means no change to the image.

       The filter allows you to redefine these two points and add some more. A new curve (using a natural  cubic
       spline  interpolation) will be define to pass smoothly through all these new coordinates. The new defined
       points needs to be strictly increasing over the x-axis, and their x and y values must  be  in  the  [0;1]
       interval.   If  the  computed curves happened to go outside the vector spaces, the values will be clipped
       accordingly.

       If there is no key point defined in "x=0", the filter will automatically insert a  (0;0)  point.  In  the
       same way, if there is no key point defined in "x=1", the filter will automatically insert a (1;1) point.

       The filter accepts the following options:

       preset
           Select  one  of  the  available  color  presets.  This  option can be used in addition to the r, g, b
           parameters; in this case, the later options takes priority on the preset values.   Available  presets
           are:

           none
           color_negative
           cross_process
           darker
           increase_contrast
           lighter
           linear_contrast
           medium_contrast
           negative
           strong_contrast
           vintage

           Default is "none".

       master, m
           Set  the  master key points. These points will define a second pass mapping. It is sometimes called a
           "luminance" or "value" mapping. It can be used with r, g, b  or  all  since  it  acts  like  a  post-
           processing LUT.

       red, r
           Set the key points for the red component.

       green, g
           Set the key points for the green component.

       blue, b
           Set the key points for the blue component.

       all Set  the  key points for all components (not including master).  Can be used in addition to the other
           key points component options. In this case, the unset component(s) will fallback on this all setting.

       psfile
           Specify a Photoshop curves file (".asv") to import the settings from.

       To avoid some filtergraph syntax conflicts, each key points list need to be defined using  the  following
       syntax: "x0/y0 x1/y1 x2/y2 ...".

       Examples

       •   Increase slightly the middle level of blue:

                   curves=blue='0.5/0.58'

       •   Vintage effect:

                   curves=r='0/0.11 .42/.51 1/0.95':g='0.50/0.48':b='0/0.22 .49/.44 1/0.8'

           Here we obtain the following coordinates for each components:

           red "(0;0.11) (0.42;0.51) (1;0.95)"

           green
               "(0;0) (0.50;0.48) (1;1)"

           blue
               "(0;0.22) (0.49;0.44) (1;0.80)"

       •   The previous example can also be achieved with the associated built-in preset:

                   curves=preset=vintage

       •   Or simply:

                   curves=vintage

       •   Use a Photoshop preset and redefine the points of the green component:

                   curves=psfile='MyCurvesPresets/purple.asv':green='0.45/0.53'

   dctdnoiz
       Denoise frames using 2D DCT (frequency domain filtering).

       This filter is not designed for real time.

       The filter accepts the following options:

       sigma, s
           Set the noise sigma constant.

           This sigma defines a hard threshold of "3 * sigma"; every DCT coefficient (absolute value) below this
           threshold with be dropped.

           If you need a more advanced filtering, see expr.

           Default is 0.

       overlap
           Set  number  overlapping  pixels for each block. Since the filter can be slow, you may want to reduce
           this value, at the cost of a less effective filter and the risk of various artefacts.

           If the overlapping value doesn't permit processing the whole input width or height, a warning will be
           displayed and according borders won't be denoised.

           Default value is blocksize-1, which is the best possible setting.

       expr, e
           Set the coefficient factor expression.

           For each coefficient of a DCT block, this expression will be evaluated as a multiplier value for  the
           coefficient.

           If this is option is set, the sigma option will be ignored.

           The absolute value of the coefficient can be accessed through the c variable.

       n   Set  the  blocksize  using  the  number of bits. "1<<n" defines the blocksize, which is the width and
           height of the processed blocks.

           The default value is 3 (8x8) and can be raised to 4 for a blocksize of 16x16. Note that changing this
           setting has huge consequences on the speed processing. Also, a larger block size does not necessarily
           means a better de-noising.

       Examples

       Apply a denoise with a sigma of 4.5:

               dctdnoiz=4.5

       The same operation can be achieved using the expression system:

               dctdnoiz=e='gte(c, 4.5*3)'

       Violent denoise using a block size of "16x16":

               dctdnoiz=15:n=4

   deband
       Remove banding artifacts from input video.  It works by replacing banded pixels  with  average  value  of
       referenced pixels.

       The filter accepts the following options:

       1thr
       2thr
       3thr
       4thr
           Set  banding detection threshold for each plane. Default is 0.02.  Valid range is 0.00003 to 0.5.  If
           difference between current pixel and reference pixel is less than threshold, it will be considered as
           banded.

       range, r
           Banding detection range in pixels. Default is 16. If positive, random number in range 0 to set  value
           will  be  used.  If  negative,  exact  absolute value will be used.  The range defines square of four
           pixels around current pixel.

       direction, d
           Set direction in radians from which four pixel will be compared. If positive, random direction from 0
           to set direction will be picked. If negative, exact of absolute value will  be  picked.  For  example
           direction  0,  -PI or -2*PI radians will pick only pixels on same row and -PI/2 will pick only pixels
           on same column.

       blur
           If enabled, current pixel is compared with average value of all four surrounding pixels. The  default
           is  enabled.  If  disabled  current  pixel is compared with all four surrounding pixels. The pixel is
           considered banded if only all four differences with surrounding pixels are less than threshold.

   decimate
       Drop duplicated frames at regular intervals.

       The filter accepts the following options:

       cycle
           Set the number of frames from which one will be dropped. Setting this to N means one frame  in  every
           batch of N frames will be dropped.  Default is 5.

       dupthresh
           Set the threshold for duplicate detection. If the difference metric for a frame is less than or equal
           to this value, then it is declared as duplicate. Default is 1.1

       scthresh
           Set scene change threshold. Default is 15.

       blockx
       blocky
           Set  the  size of the x and y-axis blocks used during metric calculations.  Larger blocks give better
           noise suppression, but also give worse detection of small movements. Must be a power of two.  Default
           is 32.

       ppsrc
           Mark  main  input  as  a  pre-processed input and activate clean source input stream. This allows the
           input to be pre-processed with various filters to help the  metrics  calculation  while  keeping  the
           frame  selection  lossless.  When  set to 1, the first stream is for the pre-processed input, and the
           second stream is the clean source from where the kept frames are chosen. Default is 0.

       chroma
           Set whether or not chroma is considered in the metric calculations. Default is 1.

   deflate
       Apply deflate effect to the video.

       This filter replaces the pixel by the local(3x3) average by taking into account only  values  lower  than
       the pixel.

       It accepts the following options:

       threshold0
       threshold1
       threshold2
       threshold3
           Limit the maximum change for each plane, default is 65535.  If 0, plane will remain unchanged.

   dejudder
       Remove judder produced by partially interlaced telecined content.

       Judder  can be introduced, for instance, by pullup filter. If the original source was partially telecined
       content then the output of "pullup,dejudder" will have a variable frame rate.  May  change  the  recorded
       frame  rate  of  the  container.  Aside from that change, this filter will not affect constant frame rate
       video.

       The option available in this filter is:

       cycle
           Specify the length of the window over which the judder repeats.

           Accepts any integer greater than 1. Useful values are:

           4   If the original was telecined from 24 to 30 fps (Film to NTSC).

           5   If the original was telecined from 25 to 30 fps (PAL to NTSC).

           20  If a mixture of the two.

           The default is 4.

   delogo
       Suppress a TV station logo by a simple interpolation of the surrounding  pixels.  Just  set  a  rectangle
       covering  the  logo and watch it disappear (and sometimes something even uglier appear - your mileage may
       vary).

       It accepts the following parameters:

       x
       y   Specify the top left corner coordinates of the logo. They must be specified.

       w
       h   Specify the width and height of the logo to clear. They must be specified.

       band, t
           Specify the thickness of the fuzzy edge of the rectangle (added to w and h). The default value is 4.

       show
           When set to 1, a green rectangle is drawn on the screen to simplify finding the right x, y, w, and  h
           parameters.  The default value is 0.

           The  rectangle  is  drawn  on  the outermost pixels which will be (partly) replaced with interpolated
           values. The values of the next pixels immediately outside this rectangle in each  direction  will  be
           used to compute the interpolated pixel values inside the rectangle.

       Examples

       •   Set a rectangle covering the area with top left corner coordinates 0,0 and size 100x77, and a band of
           size 10:

                   delogo=x=0:y=0:w=100:h=77:band=10

   deshake
       Attempt  to  fix small changes in horizontal and/or vertical shift. This filter helps remove camera shake
       from hand-holding a camera, bumping a tripod, moving on a vehicle, etc.

       The filter accepts the following options:

       x
       y
       w
       h   Specify a rectangular area where to limit the search for motion vectors.  If desired the  search  for
           motion  vectors  can  be  limited  to a rectangular area of the frame defined by its top left corner,
           width and height. These parameters have the same meaning as the drawbox filter which can be  used  to
           visualise the position of the bounding box.

           This  is  useful when simultaneous movement of subjects within the frame might be confused for camera
           motion by the motion vector search.

           If any or all of x, y, w and h are set to -1 then the full frame is used. This allows  later  options
           to be set without specifying the bounding box for the motion vector search.

           Default - search the whole frame.

       rx
       ry  Specify the maximum extent of movement in x and y directions in the range 0-64 pixels. Default 16.

       edge
           Specify how to generate pixels to fill blanks at the edge of the frame. Available values are:

           blank, 0
               Fill zeroes at blank locations

           original, 1
               Original image at blank locations

           clamp, 2
               Extruded edge value at blank locations

           mirror, 3
               Mirrored edge at blank locations

           Default value is mirror.

       blocksize
           Specify the blocksize to use for motion search. Range 4-128 pixels, default 8.

       contrast
           Specify  the  contrast  threshold  for  blocks.  Only  blocks  with  more than the specified contrast
           (difference between darkest and lightest pixels) will be considered. Range 1-255, default 125.

       search
           Specify the search strategy. Available values are:

           exhaustive, 0
               Set exhaustive search

           less, 1
               Set less exhaustive search.

           Default value is exhaustive.

       filename
           If set then a detailed log of the motion search is written to the specified file.

       opencl
           If set to 1, specify using  OpenCL  capabilities,  only  available  if  FFmpeg  was  configured  with
           "--enable-opencl". Default value is 0.

   detelecine
       Apply  an  exact  inverse of the telecine operation. It requires a predefined pattern specified using the
       pattern option which must be the same as that passed to the telecine filter.

       This filter accepts the following options:

       first_field
           top, t
               top field first

           bottom, b
               bottom field first The default value is "top".

       pattern
           A string of numbers representing the pulldown pattern you wish to apply.  The default value is 23.

       start_frame
           A number representing position of the first frame with respect to the telecine pattern. This is to be
           used if the stream is cut. The default value is 0.

   dilation
       Apply dilation effect to the video.

       This filter replaces the pixel by the local(3x3) maximum.

       It accepts the following options:

       threshold0
       threshold1
       threshold2
       threshold3
           Limit the maximum change for each plane, default is 65535.  If 0, plane will remain unchanged.

       coordinates
           Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

           Flags to local 3x3 coordinates maps like this:

               1 2 3
               4   5
               6 7 8

   drawbox
       Draw a colored box on the input image.

       It accepts the following parameters:

       x
       y   The expressions which specify the top left corner coordinates of the box. It defaults to 0.

       width, w
       height, h
           The expressions which specify the width and height of the box; if 0 they are interpreted as the input
           width and height. It defaults to 0.

       color, c
           Specify the color of the box to write. For the general syntax  of  this  option,  check  the  "Color"
           section  in the ffmpeg-utils manual. If the special value "invert" is used, the box edge color is the
           same as the video with inverted luma.

       thickness, t
           The expression which sets the thickness of the box edge. Default value is 3.

           See below for the list of accepted constants.

       The parameters for x, y, w and h and t are expressions containing the following constants:

       dar The input display aspect ratio, it is the same as (w / h) * sar.

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       in_h, ih
       in_w, iw
           The input width and height.

       sar The input sample aspect ratio.

       x
       y   The x and y offset coordinates where the box is drawn.

       w
       h   The width and height of the drawn box.

       t   The thickness of the drawn box.

           These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example
           specify "y=x/dar" or "h=w/dar".

       Examples

       •   Draw a black box around the edge of the input image:

                   drawbox

       •   Draw a box with color red and an opacity of 50%:

                   drawbox=10:20:200:60:red@0.5

           The previous example can be specified as:

                   drawbox=x=10:y=20:w=200:h=60:color=red@0.5

       •   Fill the box with pink color:

                   drawbox=x=10:y=10:w=100:h=100:color=pink@0.5:t=max

       •   Draw a 2-pixel red 2.40:1 mask:

                   drawbox=x=-t:y=0.5*(ih-iw/2.4)-t:w=iw+t*2:h=iw/2.4+t*2:t=2:c=red

   drawgraph, adrawgraph
       Draw a graph using input video or audio metadata.

       It accepts the following parameters:

       m1  Set 1st frame metadata key from which metadata values will be used to draw a graph.

       fg1 Set 1st foreground color expression.

       m2  Set 2nd frame metadata key from which metadata values will be used to draw a graph.

       fg2 Set 2nd foreground color expression.

       m3  Set 3rd frame metadata key from which metadata values will be used to draw a graph.

       fg3 Set 3rd foreground color expression.

       m4  Set 4th frame metadata key from which metadata values will be used to draw a graph.

       fg4 Set 4th foreground color expression.

       min Set minimal value of metadata value.

       max Set maximal value of metadata value.

       bg  Set graph background color. Default is white.

       mode
           Set graph mode.

           Available values for mode is:

           bar
           dot
           line

           Default is "line".

       slide
           Set slide mode.

           Available values for slide is:

           frame
               Draw new frame when right border is reached.

           replace
               Replace old columns with new ones.

           scroll
               Scroll from right to left.

           rscroll
               Scroll from left to right.

           Default is "frame".

       size
           Set size of graph video. For the syntax of this option, check the "Video size" section in the ffmpeg-
           utils manual.  The default value is "900x256".

           The foreground color expressions can use the following variables:

           MIN Minimal value of metadata value.

           MAX Maximal value of metadata value.

           VAL Current metadata key value.

           The color is defined as 0xAABBGGRR.

       Example using metadata from signalstats filter:

               signalstats,drawgraph=lavfi.signalstats.YAVG:min=0:max=255

       Example using metadata from ebur128 filter:

               ebur128=metadata=1,adrawgraph=lavfi.r128.M:min=-120:max=5

   drawgrid
       Draw a grid on the input image.

       It accepts the following parameters:

       x
       y   The expressions which specify the coordinates of some point of grid intersection (meant to  configure
           offset). Both default to 0.

       width, w
       height, h
           The expressions which specify the width and height of the grid cell, if 0 they are interpreted as the
           input width and height, respectively, minus "thickness", so image gets framed. Default to 0.

       color, c
           Specify  the  color  of the grid. For the general syntax of this option, check the "Color" section in
           the ffmpeg-utils manual. If the special value "invert" is used, the grid color is  the  same  as  the
           video with inverted luma.

       thickness, t
           The expression which sets the thickness of the grid line. Default value is 1.

           See below for the list of accepted constants.

       The parameters for x, y, w and h and t are expressions containing the following constants:

       dar The input display aspect ratio, it is the same as (w / h) * sar.

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       in_h, ih
       in_w, iw
           The input grid cell width and height.

       sar The input sample aspect ratio.

       x
       y   The x and y coordinates of some point of grid intersection (meant to configure offset).

       w
       h   The width and height of the drawn cell.

       t   The thickness of the drawn cell.

           These constants allow the x, y, w, h and t expressions to refer to each other, so you may for example
           specify "y=x/dar" or "h=w/dar".

       Examples

       •   Draw a grid with cell 100x100 pixels, thickness 2 pixels, with color red and an opacity of 50%:

                   drawgrid=width=100:height=100:thickness=2:color=red@0.5

       •   Draw a white 3x3 grid with an opacity of 50%:

                   drawgrid=w=iw/3:h=ih/3:t=2:c=white@0.5

   drawtext
       Draw a text string or text from a specified file on top of a video, using the libfreetype library.

       To  enable  compilation  of  this  filter,  you need to configure FFmpeg with "--enable-libfreetype".  To
       enable  default  font  fallback   and   the   font   option   you   need   to   configure   FFmpeg   with
       "--enable-libfontconfig".   To  enable  the  text_shaping  option,  you  need  to  configure  FFmpeg with
       "--enable-libfribidi".

       Syntax

       It accepts the following parameters:

       box Used to draw a box around text using the background color.  The value must be either 1 (enable) or  0
           (disable).  The default value of box is 0.

       boxborderw
           Set  the  width  of  the  border  to  be  drawn  around the box using boxcolor.  The default value of
           boxborderw is 0.

       boxcolor
           The color to be used for drawing box around text. For the syntax of this option,  check  the  "Color"
           section in the ffmpeg-utils manual.

           The default value of boxcolor is "white".

       borderw
           Set  the  width  of  the  border to be drawn around the text using bordercolor.  The default value of
           borderw is 0.

       bordercolor
           Set the color to be used for drawing border around text. For the syntax of  this  option,  check  the
           "Color" section in the ffmpeg-utils manual.

           The default value of bordercolor is "black".

       expansion
           Select how the text is expanded. Can be either "none", "strftime" (deprecated) or "normal" (default).
           See the drawtext_expansion, Text expansion section below for details.

       fix_bounds
           If true, check and fix text coords to avoid clipping.

       fontcolor
           The  color  to be used for drawing fonts. For the syntax of this option, check the "Color" section in
           the ffmpeg-utils manual.

           The default value of fontcolor is "black".

       fontcolor_expr
           String which is expanded the same way as text to obtain dynamic  fontcolor  value.  By  default  this
           option has empty value and is not processed. When this option is set, it overrides fontcolor option.

       font
           The font family to be used for drawing text. By default Sans.

       fontfile
           The font file to be used for drawing text. The path must be included.  This parameter is mandatory if
           the fontconfig support is disabled.

       draw
           This option does not exist, please see the timeline system

       alpha
           Draw  the  text  applying  alpha  blending.  The value can be either a number between 0.0 and 1.0 The
           expression accepts the same variables x, y do.  The default value is 1.  Please see fontcolor_expr

       fontsize
           The font size to be used for drawing text.  The default value of fontsize is 16.

       text_shaping
           If set to 1, attempt to shape the text (for example, reverse the order of right-to-left text and join
           Arabic characters) before drawing it.  Otherwise, just draw the text exactly as given.  By default  1
           (if supported).

       ft_load_flags
           The flags to be used for loading the fonts.

           The  flags  map  the  corresponding  flags  supported  by  libfreetype,  and are a combination of the
           following values:

           default
           no_scale
           no_hinting
           render
           no_bitmap
           vertical_layout
           force_autohint
           crop_bitmap
           pedantic
           ignore_global_advance_width
           no_recurse
           ignore_transform
           monochrome
           linear_design
           no_autohint

           Default value is "default".

           For more information consult the documentation for the FT_LOAD_* libfreetype flags.

       shadowcolor
           The color to be used for drawing a shadow behind the drawn text. For the syntax of this option, check
           the "Color" section in the ffmpeg-utils manual.

           The default value of shadowcolor is "black".

       shadowx
       shadowy
           The x and y offsets for the text shadow position with respect to the position of the text.  They  can
           be either positive or negative values. The default value for both is "0".

       start_number
           The starting frame number for the n/frame_num variable. The default value is "0".

       tabsize
           The size in number of spaces to use for rendering the tab.  Default value is 4.

       timecode
           Set  the  initial timecode representation in "hh:mm:ss[:;.]ff" format. It can be used with or without
           text parameter. timecode_rate option must be specified.

       timecode_rate, rate, r
           Set the timecode frame rate (timecode only).

       text
           The text string to be drawn. The text must be a sequence of UTF-8 encoded characters.  This parameter
           is mandatory if no file is specified with the parameter textfile.

       textfile
           A text file containing text to be drawn. The text must be a sequence of UTF-8 encoded characters.

           This parameter is mandatory if no text string is specified with the parameter text.

           If both text and textfile are specified, an error is thrown.

       reload
           If set to 1, the textfile will be reloaded before each frame.  Be sure to update it atomically, or it
           may be read partially, or even fail.

       x
       y   The expressions which specify the offsets where text will be drawn within the video frame.  They  are
           relative to the top/left border of the output image.

           The default value of x and y is "0".

           See below for the list of accepted constants and functions.

       The parameters for x and y are expressions containing the following constants and functions:

       dar input display aspect ratio, it is the same as (w / h) * sar

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       line_h, lh
           the height of each text line

       main_h, h, H
           the input height

       main_w, w, W
           the input width

       max_glyph_a, ascent
           the  maximum  distance  from  the baseline to the highest/upper grid coordinate used to place a glyph
           outline point, for all the rendered glyphs.  It is a positive value, due to  the  grid's  orientation
           with the Y axis upwards.

       max_glyph_d, descent
           the  maximum  distance  from the baseline to the lowest grid coordinate used to place a glyph outline
           point, for all the rendered glyphs.  This is a negative value, due to the  grid's  orientation,  with
           the Y axis upwards.

       max_glyph_h
           maximum  glyph  height, that is the maximum height for all the glyphs contained in the rendered text,
           it is equivalent to ascent - descent.

       max_glyph_w
           maximum glyph width, that is the maximum width for all the glyphs contained in the rendered text

       n   the number of input frame, starting from 0

       rand(min, max)
           return a random number included between min and max

       sar The input sample aspect ratio.

       t   timestamp expressed in seconds, NAN if the input timestamp is unknown

       text_h, th
           the height of the rendered text

       text_w, tw
           the width of the rendered text

       x
       y   the x and y offset coordinates where the text is drawn.

           These parameters allow the x and y expressions to refer each other, so you can  for  example  specify
           "y=x/dar".

       Text expansion

       If  expansion  is  set to "strftime", the filter recognizes strftime() sequences in the provided text and
       expands them accordingly. Check the documentation of strftime(). This feature is deprecated.

       If expansion is set to "none", the text is printed verbatim.

       If expansion is set to "normal" (which is the default), the following expansion mechanism is used.

       The backslash character \, followed by any character, always expands to the second character.

       Sequence of the form "%{...}" are expanded. The text between the braces  is  a  function  name,  possibly
       followed  by  arguments separated by ':'.  If the arguments contain special characters or delimiters (':'
       or '}'), they should be escaped.

       Note that they probably must also be escaped as the value for the text  option  in  the  filter  argument
       string  and  as the filter argument in the filtergraph description, and possibly also for the shell, that
       makes up to four levels of escaping; using a text file avoids these problems.

       The following functions are available:

       expr, e
           The expression evaluation result.

           It must take one argument specifying the expression to be evaluated, which accepts the same constants
           and functions as the x and y values. Note that not all constants should be used, for example the text
           size is not known when evaluating the expression, so the constants text_w and  text_h  will  have  an
           undefined value.

       expr_int_format, eif
           Evaluate the expression's value and output as formatted integer.

           The  first  argument  is  the  expression to be evaluated, just as for the expr function.  The second
           argument specifies the output format. Allowed values are x, X, d and u. They are treated  exactly  as
           in  the "printf" function.  The third parameter is optional and sets the number of positions taken by
           the output.  It can be used to add padding with zeros from the left.

       gmtime
           The time at which the filter is running, expressed in UTC.  It can accept an argument:  a  strftime()
           format string.

       localtime
           The  time  at  which  the  filter  is  running,  expressed  in the local time zone.  It can accept an
           argument: a strftime() format string.

       metadata
           Frame metadata. It must take one argument specifying metadata key.

       n, frame_num
           The frame number, starting from 0.

       pict_type
           A 1 character description of the current picture type.

       pts The timestamp of the current frame.  It can take up to two arguments.

           The first argument is the format of the timestamp; it defaults to "flt"  for  seconds  as  a  decimal
           number  with  microsecond  accuracy;  "hms"  stands  for  a  formatted [-]HH:MM:SS.mmm timestamp with
           millisecond accuracy.

           The second argument is an offset added to the timestamp.

       Examples

       •   Draw "Test Text" with font FreeSerif, using the default values for the optional parameters.

                   drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"

       •   Draw 'Test Text' with font FreeSerif of size 24 at position x=100 and y=50 (counting  from  the  top-
           left  corner  of the screen), text is yellow with a red box around it. Both the text and the box have
           an opacity of 20%.

                   drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
                             x=100: y=50: fontsize=24: fontcolor=yellow@0.2: box=1: boxcolor=red@0.2"

           Note that the double quotes are not necessary if spaces are not used within the parameter list.

       •   Show the text at the center of the video frame:

                   drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h)/2"

       •   Show a text line sliding from right to left in the last row of the video frame. The file LONG_LINE is
           assumed to contain a single line with no newlines.

                   drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"

       •   Show the content of file CREDITS off the bottom of the frame and scroll up.

                   drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"

       •   Draw a single green letter "g", at the center of the input video.  The glyph baseline  is  placed  at
           half screen height.

                   drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"

       •   Show text for 1 second every 3 seconds:

                   drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:enable=lt(mod(t\,3)\,1):text='blink'"

       •   Use fontconfig to set the font. Note that the colons need to be escaped.

                   drawtext='fontfile=Linux Libertine O-40\:style=Semibold:text=FFmpeg'

       •   Print the date of a real-time encoding (see strftime(3)):

                   drawtext='fontfile=FreeSans.ttf:text=%{localtime\:%a %b %d %Y}'

       •   Show text fading in and out (appearing/disappearing):

                   #!/bin/sh
                   DS=1.0 # display start
                   DE=10.0 # display end
                   FID=1.5 # fade in duration
                   FOD=5 # fade out duration
                   ffplay -f lavfi "color,drawtext=text=TEST:fontsize=50:fontfile=FreeSerif.ttf:fontcolor_expr=ff0000%{eif\\\\: clip(255*(1*between(t\\, $DS + $FID\\, $DE - $FOD) + ((t - $DS)/$FID)*between(t\\, $DS\\, $DS + $FID) + (-(t - $DE)/$FOD)*between(t\\, $DE - $FOD\\, $DE) )\\, 0\\, 255) \\\\: x\\\\: 2 }"

       For more information about libfreetype, check: <http://www.freetype.org/>.

       For             more             information             about             fontconfig,             check:
       <http://freedesktop.org/software/fontconfig/fontconfig-user.html>.

       For more information about libfribidi, check: <http://fribidi.org/>.

   edgedetect
       Detect and draw edges. The filter uses the Canny Edge Detection algorithm.

       The filter accepts the following options:

       low
       high
           Set low and high threshold values used by the Canny thresholding algorithm.

           The high threshold selects the "strong" edge pixels, which are then connected through  8-connectivity
           with the "weak" edge pixels selected by the low threshold.

           low and high threshold values must be chosen in the range [0,1], and low should be lesser or equal to
           high.

           Default value for low is "20/255", and default value for high is "50/255".

       mode
           Define the drawing mode.

           wires
               Draw white/gray wires on black background.

           colormix
               Mix the colors to create a paint/cartoon effect.

           Default value is wires.

       Examples

       •   Standard edge detection with custom values for the hysteresis thresholding:

                   edgedetect=low=0.1:high=0.4

       •   Painting effect without thresholding:

                   edgedetect=mode=colormix:high=0

   eq
       Set brightness, contrast, saturation and approximate gamma adjustment.

       The filter accepts the following options:

       contrast
           Set  the  contrast  expression.  The  value must be a float value in range "-2.0" to 2.0. The default
           value is "0".

       brightness
           Set the brightness expression. The value must be a float value in range "-1.0" to  1.0.  The  default
           value is "0".

       saturation
           Set  the  saturation  expression. The value must be a float in range 0.0 to 3.0. The default value is
           "1".

       gamma
           Set the gamma expression. The value must be a float in range 0.1 to 10.0.  The default value is "1".

       gamma_r
           Set the gamma expression for red. The value must be a float in range 0.1 to 10.0. The  default  value
           is "1".

       gamma_g
           Set the gamma expression for green. The value must be a float in range 0.1 to 10.0. The default value
           is "1".

       gamma_b
           Set  the gamma expression for blue. The value must be a float in range 0.1 to 10.0. The default value
           is "1".

       gamma_weight
           Set the gamma weight expression. It can be used to reduce the effect of a high gamma value on  bright
           image  areas,  e.g.  keep  them  from getting overamplified and just plain white. The value must be a
           float in range 0.0 to 1.0. A value of 0.0 turns the gamma correction  all  the  way  down  while  1.0
           leaves it at its full strength. Default is "1".

       eval
           Set when the expressions for brightness, contrast, saturation and gamma expressions are evaluated.

           It accepts the following values:

           init
               only evaluate expressions once during the filter initialization or when a command is processed

           frame
               evaluate expressions for each incoming frame

           Default value is init.

       The expressions accept the following parameters:

       n   frame count of the input frame starting from 0

       pos byte position of the corresponding packet in the input file, NAN if unspecified

       r   frame rate of the input video, NAN if the input frame rate is unknown

       t   timestamp expressed in seconds, NAN if the input timestamp is unknown

       Commands

       The filter supports the following commands:

       contrast
           Set the contrast expression.

       brightness
           Set the brightness expression.

       saturation
           Set the saturation expression.

       gamma
           Set the gamma expression.

       gamma_r
           Set the gamma_r expression.

       gamma_g
           Set gamma_g expression.

       gamma_b
           Set gamma_b expression.

       gamma_weight
           Set gamma_weight expression.

           The command accepts the same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

   erosion
       Apply erosion effect to the video.

       This filter replaces the pixel by the local(3x3) minimum.

       It accepts the following options:

       threshold0
       threshold1
       threshold2
       threshold3
           Limit the maximum change for each plane, default is 65535.  If 0, plane will remain unchanged.

       coordinates
           Flag which specifies the pixel to refer to. Default is 255 i.e. all eight pixels are used.

           Flags to local 3x3 coordinates maps like this:

               1 2 3
               4   5
               6 7 8

   extractplanes
       Extract color channel components from input video stream into separate grayscale video streams.

       The filter accepts the following option:

       planes
           Set plane(s) to extract.

           Available values for planes are:

           y
           u
           v
           a
           r
           g
           b

           Choosing  planes  not  available  in the input will result in an error.  That means you cannot select
           "r", "g", "b" planes with "y", "u", "v" planes at same time.

       Examples

       •   Extract luma, u and v color channel component from input video frame into 3 grayscale outputs:

                   ffmpeg -i video.avi -filter_complex 'extractplanes=y+u+v[y][u][v]' -map '[y]' y.avi -map '[u]' u.avi -map '[v]' v.avi

   elbg
       Apply a posterize effect using the ELBG (Enhanced LBG) algorithm.

       For each input image, the filter will compute the optimal mapping from the input to the output given  the
       codebook length, that is the number of distinct output colors.

       This filter accepts the following options.

       codebook_length, l
           Set  codebook  length.  The  value  must be a positive integer, and represents the number of distinct
           output colors. Default value is 256.

       nb_steps, n
           Set the maximum number of iterations to apply for computing the optimal mapping. The higher the value
           the better the result and the higher the computation time. Default value is 1.

       seed, s
           Set a random seed, must be an integer included between 0 and UINT32_MAX.  If  not  specified,  or  if
           explicitly set to -1, the filter will try to use a good random seed on a best effort basis.

       pal8
           Set pal8 output pixel format. This option does not work with codebook length greater than 256.

   fade
       Apply a fade-in/out effect to the input video.

       It accepts the following parameters:

       type, t
           The effect type can be either "in" for a fade-in, or "out" for a fade-out effect.  Default is "in".

       start_frame, s
           Specify the number of the frame to start applying the fade effect at. Default is 0.

       nb_frames, n
           The  number  of frames that the fade effect lasts. At the end of the fade-in effect, the output video
           will have the same intensity as the input video.  At the end of the fade-out transition,  the  output
           video will be filled with the selected color.  Default is 25.

       alpha
           If set to 1, fade only alpha channel, if one exists on the input.  Default value is 0.

       start_time, st
           Specify  the  timestamp  (in  seconds)  of  the  frame  to  start  to  apply the fade effect. If both
           start_frame and start_time are specified, the fade will start at whichever comes last.  Default is 0.

       duration, d
           The number of seconds for which the fade effect has to last. At the end of  the  fade-in  effect  the
           output  video  will have the same intensity as the input video, at the end of the fade-out transition
           the output video will be filled with  the  selected  color.   If  both  duration  and  nb_frames  are
           specified, duration is used. Default is 0 (nb_frames is used by default).

       color, c
           Specify the color of the fade. Default is "black".

       Examples

       •   Fade in the first 30 frames of video:

                   fade=in:0:30

           The command above is equivalent to:

                   fade=t=in:s=0:n=30

       •   Fade out the last 45 frames of a 200-frame video:

                   fade=out:155:45
                   fade=type=out:start_frame=155:nb_frames=45

       •   Fade in the first 25 frames and fade out the last 25 frames of a 1000-frame video:

                   fade=in:0:25, fade=out:975:25

       •   Make the first 5 frames yellow, then fade in from frame 5-24:

                   fade=in:5:20:color=yellow

       •   Fade in alpha over first 25 frames of video:

                   fade=in:0:25:alpha=1

       •   Make the first 5.5 seconds black, then fade in for 0.5 seconds:

                   fade=t=in:st=5.5:d=0.5

   fftfilt
       Apply arbitrary expressions to samples in frequency domain

       dc_Y
           Adjust  the  dc  value  (gain) of the luma plane of the image. The filter accepts an integer value in
           range 0 to 1000. The default value is set to 0.

       dc_U
           Adjust the dc value (gain) of the 1st chroma plane of the image. The filter accepts an integer  value
           in range 0 to 1000. The default value is set to 0.

       dc_V
           Adjust  the dc value (gain) of the 2nd chroma plane of the image. The filter accepts an integer value
           in range 0 to 1000. The default value is set to 0.

       weight_Y
           Set the frequency domain weight expression for the luma plane.

       weight_U
           Set the frequency domain weight expression for the 1st chroma plane.

       weight_V
           Set the frequency domain weight expression for the 2nd chroma plane.

           The filter accepts the following variables:

       X
       Y   The coordinates of the current sample.

       W
       H   The width and height of the image.

       Examples

       •   High-pass:

                   fftfilt=dc_Y=128:weight_Y='squish(1-(Y+X)/100)'

       •   Low-pass:

                   fftfilt=dc_Y=0:weight_Y='squish((Y+X)/100-1)'

       •   Sharpen:

                   fftfilt=dc_Y=0:weight_Y='1+squish(1-(Y+X)/100)'

   field
       Extract a single field from an interlaced image using stride arithmetic to avoid wasting  CPU  time.  The
       output frames are marked as non-interlaced.

       The filter accepts the following options:

       type
           Specify  whether to extract the top (if the value is 0 or "top") or the bottom field (if the value is
           1 or "bottom").

   fieldmatch
       Field matching filter for inverse telecine. It is meant to reconstruct  the  progressive  frames  from  a
       telecined  stream.  The filter does not drop duplicated frames, so to achieve a complete inverse telecine
       "fieldmatch" needs to be followed by a decimation filter such as decimate in the filtergraph.

       The separation of the field matching and the decimation  is  notably  motivated  by  the  possibility  of
       inserting  a  de-interlacing filter fallback between the two.  If the source has mixed telecined and real
       interlaced content, "fieldmatch" will not be able to match fields for the interlaced  parts.   But  these
       remaining  combed  frames  will  be marked as interlaced, and thus can be de-interlaced by a later filter
       such as yadif before decimation.

       In addition to the various configuration options,  "fieldmatch"  can  take  an  optional  second  stream,
       activated through the ppsrc option. If enabled, the frames reconstruction will be based on the fields and
       frames  from  this  second  stream.  This allows the first input to be pre-processed in order to help the
       various algorithms of the filter, while keeping the output lossless  (assuming  the  fields  are  matched
       properly). Typically, a field-aware denoiser, or brightness/contrast adjustments can help.

       Note that this filter uses the same algorithms as TIVTC/TFM (AviSynth project) and VIVTC/VFM (VapourSynth
       project).  The  later is a light clone of TFM from which "fieldmatch" is based on. While the semantic and
       usage are very close, some behaviour and options names can differ.

       The decimate filter currently only works for  constant  frame  rate  input.   If  your  input  has  mixed
       telecined (30fps) and progressive content with a lower framerate like 24fps use the following filterchain
       to produce the necessary cfr stream: "dejudder,fps=30000/1001,fieldmatch,decimate".

       The filter accepts the following options:

       order
           Specify the assumed field order of the input stream. Available values are:

           auto
               Auto detect parity (use FFmpeg's internal parity value).

           bff Assume bottom field first.

           tff Assume top field first.

           Note that it is sometimes recommended not to trust the parity announced by the stream.

           Default value is auto.

       mode
           Set  the  matching  mode  or  strategy  to use. pc mode is the safest in the sense that it won't risk
           creating jerkiness due to duplicate frames when possible, but if  there  are  bad  edits  or  blended
           fields  it  will end up outputting combed frames when a good match might actually exist. On the other
           hand, pcn_ub mode is the most risky in terms of creating jerkiness, but will  almost  always  find  a
           good  frame  if there is one. The other values are all somewhere in between pc and pcn_ub in terms of
           risking jerkiness and creating duplicate frames versus finding good  matches  in  sections  with  bad
           edits, orphaned fields, blended fields, etc.

           More details about p/c/n/u/b are available in p/c/n/u/b meaning section.

           Available values are:

           pc  2-way matching (p/c)

           pc_n
               2-way matching, and trying 3rd match if still combed (p/c + n)

           pc_u
               2-way matching, and trying 3rd match (same order) if still combed (p/c + u)

           pc_n_ub
               2-way matching, trying 3rd match if still combed, and trying 4th/5th matches if still combed (p/c
               + n + u/b)

           pcn 3-way matching (p/c/n)

           pcn_ub
               3-way  matching,  and  trying  4th/5th  matches  if all 3 of the original matches are detected as
               combed (p/c/n + u/b)

           The parenthesis at the end indicate the matches that would be used for that mode  assuming  order=tff
           (and field on auto or top).

           In terms of speed pc mode is by far the fastest and pcn_ub is the slowest.

           Default value is pc_n.

       ppsrc
           Mark  the  main  input  stream as a pre-processed input, and enable the secondary input stream as the
           clean source to pick the fields from. See the filter introduction for more details. It is similar  to
           the clip2 feature from VFM/TFM.

           Default value is 0 (disabled).

       field
           Set  the  field  to  match  from. It is recommended to set this to the same value as order unless you
           experience matching failures with that setting. In certain circumstances changing the field  that  is
           used to match from can have a large impact on matching performance. Available values are:

           auto
               Automatic (same value as order).

           bottom
               Match from the bottom field.

           top Match from the top field.

           Default value is auto.

       mchroma
           Set  whether  or not chroma is included during the match comparisons. In most cases it is recommended
           to leave this enabled. You should set this to 0 only if your clip has bad  chroma  problems  such  as
           heavy  rainbowing  or other artifacts. Setting this to 0 could also be used to speed things up at the
           cost of some accuracy.

           Default value is 1.

       y0
       y1  These define an exclusion band which excludes the lines between y0 and y1 from being included in  the
           field  matching  decision. An exclusion band can be used to ignore subtitles, a logo, or other things
           that may interfere with the matching. y0 sets the starting scan line and y1 sets the ending line; all
           lines in between y0 and y1 (including y0 and y1) will be ignored. Setting y0 and y1 to the same value
           will disable the feature.  y0 and y1 defaults to 0.

       scthresh
           Set the scene change detection threshold as a percentage of maximum change on the  luma  plane.  Good
           values  are in the "[8.0, 14.0]" range. Scene change detection is only relevant in case combmatch=sc.
           The range for scthresh is "[0.0, 100.0]".

           Default value is 12.0.

       combmatch
           When combatch is not none, "fieldmatch" will take into account the  combed  scores  of  matches  when
           deciding what match to use as the final match. Available values are:

           none
               No final matching based on combed scores.

           sc  Combed scores are only used when a scene change is detected.

           full
               Use combed scores all the time.

           Default is sc.

       combdbg
           Force  "fieldmatch"  to calculate the combed metrics for certain matches and print them. This setting
           is known as micout in TFM/VFM vocabulary.  Available values are:

           none
               No forced calculation.

           pcn Force p/c/n calculations.

           pcnub
               Force p/c/n/u/b calculations.

           Default value is none.

       cthresh
           This is the area combing threshold used for combed frame detection.  This  essentially  controls  how
           "strong"  or  "visible"  combing  must  be  to  be detected.  Larger values mean combing must be more
           visible and smaller values mean combing can be less visible or strong and still  be  detected.  Valid
           settings  are from "-1" (every pixel will be detected as combed) to 255 (no pixel will be detected as
           combed). This is basically a pixel difference value. A good range is "[8, 12]".

           Default value is 9.

       chroma
           Sets whether or not chroma is considered in the combed frame decision.  Only  disable  this  if  your
           source  has  chroma  problems  (rainbowing,  etc.)  that  are  causing  problems for the combed frame
           detection with chroma enabled. Actually, using chroma=0 is usually more reliable, except for the case
           where there is chroma only combing in the source.

           Default value is 0.

       blockx
       blocky
           Respectively set the x-axis and y-axis size of the window used during combed  frame  detection.  This
           has to do with the size of the area in which combpel pixels are required to be detected as combed for
           a  frame to be declared combed. See the combpel parameter description for more info.  Possible values
           are any number that is a power of 2 starting at 4 and going up to 512.

           Default value is 16.

       combpel
           The number of combed pixels inside any of the blocky by blockx size blocks on the frame for the frame
           to be detected as combed. While cthresh controls how "visible" the  combing  must  be,  this  setting
           controls  "how  much" combing there must be in any localized area (a window defined by the blockx and
           blocky settings) on the frame. Minimum value is 0 and maximum is "blocky x blockx" (at which point no
           frames will ever be detected as combed). This setting is known as MI in TFM/VFM vocabulary.

           Default value is 80.

       p/c/n/u/b meaning

       p/c/n

       We assume the following telecined stream:

               Top fields:     1 2 2 3 4
               Bottom fields:  1 2 3 4 4

       The numbers correspond to the progressive frame the fields relate to. Here,  the  first  two  frames  are
       progressive, the 3rd and 4th are combed, and so on.

       When  "fieldmatch"  is  configured  to  run  a matching from bottom (field=bottom) this is how this input
       stream get transformed:

               Input stream:
                               T     1 2 2 3 4
                               B     1 2 3 4 4   <-- matching reference

               Matches:              c c n n c

               Output stream:
                               T     1 2 3 4 4
                               B     1 2 3 4 4

       As a result of the field matching, we can see that some frames get duplicated.   To  perform  a  complete
       inverse  telecine,  you  need  to  rely on a decimation filter after this operation. See for instance the
       decimate filter.

       The same operation now matching from top fields (field=top) looks like this:

               Input stream:
                               T     1 2 2 3 4   <-- matching reference
                               B     1 2 3 4 4

               Matches:              c c p p c

               Output stream:
                               T     1 2 2 3 4
                               B     1 2 2 3 4

       In these examples, we can see what p, c and n mean; basically, they refer to the frame and field  of  the
       opposite parity:

       *<p matches the field of the opposite parity in the previous frame>
       *<c matches the field of the opposite parity in the current frame>
       *<n matches the field of the opposite parity in the next frame>

       u/b

       The u and b matching are a bit special in the sense that they match from the opposite parity flag. In the
       following  examples,  we assume that we are currently matching the 2nd frame (Top:2, bottom:2). According
       to the match, a 'x' is placed above and below each matched fields.

       With bottom matching (field=bottom):

               Match:           c         p           n          b          u

                                x       x               x        x          x
                 Top          1 2 2     1 2 2       1 2 2      1 2 2      1 2 2
                 Bottom       1 2 3     1 2 3       1 2 3      1 2 3      1 2 3
                                x         x           x        x              x

               Output frames:
                                2          1          2          2          2
                                2          2          2          1          3

       With top matching (field=top):

               Match:           c         p           n          b          u

                                x         x           x        x              x
                 Top          1 2 2     1 2 2       1 2 2      1 2 2      1 2 2
                 Bottom       1 2 3     1 2 3       1 2 3      1 2 3      1 2 3
                                x       x               x        x          x

               Output frames:
                                2          2          2          1          2
                                2          1          3          2          2

       Examples

       Simple IVTC of a top field first telecined stream:

               fieldmatch=order=tff:combmatch=none, decimate

       Advanced IVTC, with fallback on yadif for still combed frames:

               fieldmatch=order=tff:combmatch=full, yadif=deint=interlaced, decimate

   fieldorder
       Transform the field order of the input video.

       It accepts the following parameters:

       order
           The output field order. Valid values are tff for top field first or bff for bottom field first.

       The default value is tff.

       The transformation is done by shifting the picture content up or  down  by  one  line,  and  filling  the
       remaining  line  with  appropriate  picture content.  This method is consistent with most broadcast field
       order converters.

       If the input video is not flagged as being interlaced, or it is already flagged as being of the  required
       output field order, then this filter does not alter the incoming video.

       It is very useful when converting to or from PAL DV material, which is bottom field first.

       For example:

               ffmpeg -i in.vob -vf "fieldorder=bff" out.dv

   fifo
       Buffer input images and send them when they are requested.

       It is mainly useful when auto-inserted by the libavfilter framework.

       It does not take parameters.

   find_rect
       Find a rectangular object

       It accepts the following options:

       object
           Filepath of the object image, needs to be in gray8.

       threshold
           Detection threshold, default is 0.5.

       mipmaps
           Number of mipmaps, default is 3.

       xmin, ymin, xmax, ymax
           Specifies the rectangle in which to search.

       Examples

       •   Generate a representative palette of a given video using ffmpeg:

                   ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

   cover_rect
       Cover a rectangular object

       It accepts the following options:

       cover
           Filepath of the optional cover image, needs to be in yuv420.

       mode
           Set covering mode.

           It accepts the following values:

           cover
               cover it by the supplied image

           blur
               cover it by interpolating the surrounding pixels

           Default value is blur.

       Examples

       •   Generate a representative palette of a given video using ffmpeg:

                   ffmpeg -i file.ts -vf find_rect=newref.pgm,cover_rect=cover.jpg:mode=cover new.mkv

   format
       Convert  the input video to one of the specified pixel formats.  Libavfilter will try to pick one that is
       suitable as input to the next filter.

       It accepts the following parameters:

       pix_fmts
           A '|'-separated list of pixel format names, such as "pix_fmts=yuv420p|monow|rgb24".

       Examples

       •   Convert the input video to the yuv420p format

                   format=pix_fmts=yuv420p

           Convert the input video to any of the formats in the list

                   format=pix_fmts=yuv420p|yuv444p|yuv410p

   fps
       Convert the video to specified constant frame rate by duplicating or dropping frames as necessary.

       It accepts the following parameters:

       fps The desired output frame rate. The default is 25.

       round
           Rounding method.

           Possible values are:

           zero
               zero round towards 0

           inf round away from 0

           down
               round towards -infinity

           up  round towards +infinity

           near
               round to nearest

           The default is "near".

       start_time
           Assume the first PTS should be the given value, in seconds. This allows for padding/trimming  at  the
           start  of  stream.  By  default,  no  assumption  is made about the first frame's expected PTS, so no
           padding or trimming is done.  For example, this  could  be  set  to  0  to  pad  the  beginning  with
           duplicates  of  the first frame if a video stream starts after the audio stream or to trim any frames
           with a negative PTS.

       Alternatively, the options can be specified as a flat string: fps[:round].

       See also the setpts filter.

       Examples

       •   A typical usage in order to set the fps to 25:

                   fps=fps=25

       •   Sets the fps to 24, using abbreviation and rounding method to round to nearest:

                   fps=fps=film:round=near

   framepack
       Pack two different video streams into a stereoscopic video, setting proper metadata on supported  codecs.
       The  two  views  should  have the same size and framerate and processing will stop when the shorter video
       ends. Please note that you may conveniently adjust view properties with the scale and fps filters.

       It accepts the following parameters:

       format
           The desired packing format. Supported values are:

           sbs The views are next to each other (default).

           tab The views are on top of each other.

           lines
               The views are packed by line.

           columns
               The views are packed by column.

           frameseq
               The views are temporally interleaved.

       Some examples:

               # Convert left and right views into a frame-sequential video
               ffmpeg -i LEFT -i RIGHT -filter_complex framepack=frameseq OUTPUT

               # Convert views into a side-by-side video with the same output resolution as the input
               ffmpeg -i LEFT -i RIGHT -filter_complex [0:v]scale=w=iw/2[left],[1:v]scale=w=iw/2[right],[left][right]framepack=sbs OUTPUT

   framerate
       Change the frame rate by interpolating new video output frames from the source frames.

       This filter is not designed to function correctly with interlaced media. If you wish to change the  frame
       rate  of  interlaced media then you are required to deinterlace before this filter and re-interlace after
       this filter.

       A description of the accepted options follows.

       fps Specify the output frames per second. This option can also be specified as a value alone. The default
           is 50.

       interp_start
           Specify the start of a range where the output frame will be created as a linear interpolation of  two
           frames. The range is [0-255], the default is 15.

       interp_end
           Specify  the  end  of a range where the output frame will be created as a linear interpolation of two
           frames. The range is [0-255], the default is 240.

       scene
           Specify the level at which a scene change is detected as a value between 0 and 100 to indicate a  new
           scene; a low value reflects a low probability for the current frame to introduce a new scene, while a
           higher value means the current frame is more likely to be one.  The default is 7.

       flags
           Specify flags influencing the filter process.

           Available value for flags is:

           scene_change_detect, scd
               Enable  scene  change  detection  using  the  value of the option scene.  This flag is enabled by
               default.

   framestep
       Select one frame every N-th frame.

       This filter accepts the following option:

       step
           Select frame after every "step" frames.  Allowed values are positive integers higher than 0.  Default
           value is 1.

   frei0r
       Apply a frei0r effect to the input video.

       To enable the compilation of this filter, you need to install the frei0r header and configure FFmpeg with
       "--enable-frei0r".

       It accepts the following parameters:

       filter_name
           The name of the frei0r effect to load. If the environment variable FREI0R_PATH is defined, the frei0r
           effect  is  searched  for  in  each  of  the  directories  specified  by  the colon-separated list in
           FREI0R_PATH.  Otherwise, the standard frei0r paths are searched, in this order:  HOME/.frei0r-1/lib/,
           /usr/local/lib/frei0r-1/, /usr/lib/frei0r-1/.

       filter_params
           A '|'-separated list of parameters to pass to the frei0r effect.

       A frei0r effect parameter can be a boolean (its value is either "y" or "n"), a double, a color (specified
       as  R/G/B,  where  R,  G,  and B are floating point numbers between 0.0 and 1.0, inclusive) or by a color
       description specified in the "Color" section in the ffmpeg-utils manual), a position (specified  as  X/Y,
       where X and Y are floating point numbers) and/or a string.

       The  number and types of parameters depend on the loaded effect. If an effect parameter is not specified,
       the default value is set.

       Examples

       •   Apply the distort0r effect, setting the first two double parameters:

                   frei0r=filter_name=distort0r:filter_params=0.5|0.01

       •   Apply the colordistance effect, taking a color as the first parameter:

                   frei0r=colordistance:0.2/0.3/0.4
                   frei0r=colordistance:violet
                   frei0r=colordistance:0x112233

       •   Apply the perspective effect, specifying the top left and top right image positions:

                   frei0r=perspective:0.2/0.2|0.8/0.2

       For more information, see <http://frei0r.dyne.org>

   fspp
       Apply fast and simple postprocessing. It is a faster version of spp.

       It splits (I)DCT into horizontal/vertical passes. Unlike the simple post- processing filter, one of  them
       is performed once per block, not per pixel.  This allows for much higher speed.

       The filter accepts the following options:

       quality
           Set  quality.  This  option  defines the number of levels for averaging. It accepts an integer in the
           range 4-5. Default value is 4.

       qp  Force a constant quantization parameter. It accepts an integer in range 0-63.  If not set, the filter
           will use the QP from the video stream (if available).

       strength
           Set filter strength. It accepts an integer in range -15 to 32. Lower values  mean  more  details  but
           also  more artifacts, while higher values make the image smoother but also blurrier. Default value is
           0 X PSNR optimal.

       use_bframe_qp
           Enable the use of the QP from the B-Frames if set to 1. Using this option may cause flicker since the
           B-Frames have often larger QP. Default is 0 (not enabled).

   geq
       The filter accepts the following options:

       lum_expr, lum
           Set the luminance expression.

       cb_expr, cb
           Set the chrominance blue expression.

       cr_expr, cr
           Set the chrominance red expression.

       alpha_expr, a
           Set the alpha expression.

       red_expr, r
           Set the red expression.

       green_expr, g
           Set the green expression.

       blue_expr, b
           Set the blue expression.

       The colorspace is selected according to the specified options.  If  one  of  the  lum_expr,  cb_expr,  or
       cr_expr  options  is  specified,  the  filter will automatically select a YCbCr colorspace. If one of the
       red_expr, green_expr, or blue_expr options is specified, it will select an RGB colorspace.

       If one of the chrominance expression is not defined, it  falls  back  on  the  other  one.  If  no  alpha
       expression  is  specified  it  will  evaluate  to  opaque  value.  If none of chrominance expressions are
       specified, they will evaluate to the luminance expression.

       The expressions can use the following variables and functions:

       N   The sequential number of the filtered frame, starting from 0.

       X
       Y   The coordinates of the current sample.

       W
       H   The width and height of the image.

       SW
       SH  Width and height scale depending on the currently  filtered  plane.  It  is  the  ratio  between  the
           corresponding  luma  plane  number of pixels and the current plane ones. E.g. for YUV4:2:0 the values
           are "1,1" for the luma plane, and "0.5,0.5" for chroma planes.

       T   Time of the current frame, expressed in seconds.

       p(x, y)
           Return the value of the pixel at location (x,y) of the current plane.

       lum(x, y)
           Return the value of the pixel at location (x,y) of the luminance plane.

       cb(x, y)
           Return the value of the pixel at location (x,y) of the blue-difference  chroma  plane.  Return  0  if
           there is no such plane.

       cr(x, y)
           Return the value of the pixel at location (x,y) of the red-difference chroma plane. Return 0 if there
           is no such plane.

       r(x, y)
       g(x, y)
       b(x, y)
           Return the value of the pixel at location (x,y) of the red/green/blue component. Return 0 if there is
           no such component.

       alpha(x, y)
           Return  the  value  of  the  pixel at location (x,y) of the alpha plane. Return 0 if there is no such
           plane.

       For functions, if x and y are outside the area, the value will be automatically  clipped  to  the  closer
       edge.

       Examples

       •   Flip the image horizontally:

                   geq=p(W-X\,Y)

       •   Generate a bidimensional sine wave, with angle "PI/3" and a wavelength of 100 pixels:

                   geq=128 + 100*sin(2*(PI/100)*(cos(PI/3)*(X-50*T) + sin(PI/3)*Y)):128:128

       •   Generate a fancy enigmatic moving light:

                   nullsrc=s=256x256,geq=random(1)/hypot(X-cos(N*0.07)*W/2-W/2\,Y-sin(N*0.09)*H/2-H/2)^2*1000000*sin(N*0.02):128:128

       •   Generate a quick emboss effect:

                   format=gray,geq=lum_expr='(p(X,Y)+(256-p(X-4,Y-4)))/2'

       •   Modify RGB components depending on pixel position:

                   geq=r='X/W*r(X,Y)':g='(1-X/W)*g(X,Y)':b='(H-Y)/H*b(X,Y)'

       •   Create a radial gradient that is the same size as the input (also see the vignette filter):

                   geq=lum=255*gauss((X/W-0.5)*3)*gauss((Y/H-0.5)*3)/gauss(0)/gauss(0),format=gray

       •   Create  a  linear  gradient  to  use as a mask for another filter, then compose with overlay. In this
           example the video will gradually become more blurry from the top to  the  bottom  of  the  y-axis  as
           defined by the linear gradient:

                   ffmpeg -i input.mp4 -filter_complex "geq=lum=255*(Y/H),format=gray[grad];[0:v]boxblur=4[blur];[blur][grad]alphamerge[alpha];[0:v][alpha]overlay" output.mp4

   gradfun
       Fix  the  banding  artifacts that are sometimes introduced into nearly flat regions by truncation to 8bit
       color depth.  Interpolate the gradients that should go where the bands are, and dither them.

       It is designed for playback only.  Do not use it prior to lossy compression, because compression tends to
       lose the dither and bring back the bands.

       It accepts the following parameters:

       strength
           The maximum amount by which the filter will change any one pixel. This  is  also  the  threshold  for
           detecting nearly flat regions. Acceptable values range from .51 to 64; the default value is 1.2. Out-
           of-range values will be clipped to the valid range.

       radius
           The  neighborhood  to  fit  the  gradient  to. A larger radius makes for smoother gradients, but also
           prevents the filter from modifying the pixels near detailed regions. Acceptable values are 8-32;  the
           default value is 16. Out-of-range values will be clipped to the valid range.

       Alternatively, the options can be specified as a flat string: strength[:radius]

       Examples

       •   Apply the filter with a 3.5 strength and radius of 8:

                   gradfun=3.5:8

       •   Specify radius, omitting the strength (which will fall-back to the default value):

                   gradfun=radius=8

   haldclut
       Apply a Hald CLUT to a video stream.

       First  input is the video stream to process, and second one is the Hald CLUT.  The Hald CLUT input can be
       a simple picture or a complete video stream.

       The filter accepts the following options:

       shortest
           Force termination when the shortest input terminates. Default is 0.

       repeatlast
           Continue applying the last CLUT after the end of the stream. A value of 0 disable  the  filter  after
           the last frame of the CLUT is reached.  Default is 1.

       "haldclut" also has the same interpolation options as lut3d (both filters share the same internals).

       More  information  about  the  Hald  CLUT can be found on Eskil Steenberg's website (Hald CLUT author) at
       <http://www.quelsolaar.com/technology/clut.html>.

       Workflow examples

       Hald CLUT video stream

       Generate an identity Hald CLUT stream altered with various effects:

               ffmpeg -f lavfi -i B<haldclutsrc>=8 -vf "hue=H=2*PI*t:s=sin(2*PI*t)+1, curves=cross_process" -t 10 -c:v ffv1 clut.nut

       Note: make sure you use a lossless codec.

       Then use it with "haldclut" to apply it on some random stream:

               ffmpeg -f lavfi -i mandelbrot -i clut.nut -filter_complex '[0][1] haldclut' -t 20 mandelclut.mkv

       The Hald CLUT will be applied to the 10 first seconds (duration of clut.nut), then the latest picture  of
       that CLUT stream will be applied to the remaining frames of the "mandelbrot" stream.

       Hald CLUT with preview

       A Hald CLUT is supposed to be a squared image of "Level*Level*Level" by "Level*Level*Level" pixels. For a
       given  Hald CLUT, FFmpeg will select the biggest possible square starting at the top left of the picture.
       The remaining padding pixels (bottom or right) will be ignored. This area can be used to add a preview of
       the Hald CLUT.

       Typically, the following generated Hald CLUT will be supported by the "haldclut" filter:

               ffmpeg -f lavfi -i B<haldclutsrc>=8 -vf "
                  pad=iw+320 [padded_clut];
                  smptebars=s=320x256, split [a][b];
                  [padded_clut][a] overlay=W-320:h, curves=color_negative [main];
                  [main][b] overlay=W-320" -frames:v 1 clut.png

       It contains the original and a preview of the effect of the CLUT: SMPTE color bars are displayed  on  the
       right-top, and below the same color bars processed by the color changes.

       Then, the effect of this Hald CLUT can be visualized with:

               ffplay input.mkv -vf "movie=clut.png, [in] haldclut"

   hflip
       Flip the input video horizontally.

       For example, to horizontally flip the input video with ffmpeg:

               ffmpeg -i in.avi -vf "hflip" out.avi

   histeq
       This filter applies a global color histogram equalization on a per-frame basis.

       It  can  be  used  to  correct  video  that  has  a  compressed  range  of pixel intensities.  The filter
       redistributes the pixel intensities to equalize their distribution across the intensity range. It may  be
       viewed  as  an  "automatically  adjusting  contrast  filter".  This  filter is useful only for correcting
       degraded or poorly captured source video.

       The filter accepts the following options:

       strength
           Determine the amount of equalization to be applied.  As the strength is reduced, the distribution  of
           pixel  intensities more-and-more approaches that of the input frame. The value must be a float number
           in the range [0,1] and defaults to 0.200.

       intensity
           Set the maximum intensity that can generated and scale the output values appropriately.  The strength
           should be set as desired and then the intensity can be limited if needed to  avoid  washing-out.  The
           value must be a float number in the range [0,1] and defaults to 0.210.

       antibanding
           Set the antibanding level. If enabled the filter will randomly vary the luminance of output pixels by
           a  small amount to avoid banding of the histogram. Possible values are "none", "weak" or "strong". It
           defaults to "none".

   histogram
       Compute and draw a color distribution histogram for the input video.

       The computed histogram is a representation of the color component distribution in an image.

       The filter accepts the following options:

       mode
           Set histogram mode.

           It accepts the following values:

           levels
               Standard histogram that displays the color components distribution in an  image.  Displays  color
               graph  for  each  color  component.  Shows  distribution of the Y, U, V, A or R, G, B components,
               depending on input format, in the current frame. Below each graph a color component  scale  meter
               is shown.

           color
               Displays  chroma  values  (U/V  color  placement)  in  a two dimensional graph (which is called a
               vectorscope). The brighter a pixel in the  vectorscope,  the  more  pixels  of  the  input  frame
               correspond to that pixel (i.e., more pixels have this chroma value). The V component is displayed
               on  the  horizontal (X) axis, with the leftmost side being V = 0 and the rightmost side being V =
               255. The U component is displayed on the vertical (Y) axis, with the top representing U =  0  and
               the bottom representing U = 255.

               The  position  of  a  white  pixel in the graph corresponds to the chroma value of a pixel of the
               input clip. The graph can therefore be used to read the hue (color  flavor)  and  the  saturation
               (the  dominance  of  the  hue  in  the color). As the hue of a color changes, it moves around the
               square. At the center of the square the saturation is zero, which means  that  the  corresponding
               pixel  has  no  color.  If  the  amount of a specific color is increased (while leaving the other
               colors unchanged) the saturation increases, and the indicator  moves  towards  the  edge  of  the
               square.

           color2
               Chroma values in vectorscope, similar as "color" but actual chroma values are displayed.

           waveform
               Per  row/column  color  component graph. In row mode, the graph on the left side represents color
               component value 0 and the right side represents value =  255.   In  column  mode,  the  top  side
               represents color component value = 0 and bottom side represents value = 255.

           Default value is "levels".

       level_height
           Set height of level in "levels". Default value is 200.  Allowed range is [50, 2048].

       scale_height
           Set height of color scale in "levels". Default value is 12.  Allowed range is [0, 40].

       step
           Set  step  for  "waveform"  mode.  Smaller  values are useful to find out how many values of the same
           luminance are distributed across input rows/columns.  Default value is 10. Allowed range is [1, 255].

       waveform_mode
           Set mode for "waveform". Can be either "row", or "column".  Default is "row".

       waveform_mirror
           Set mirroring mode for "waveform". 0 means unmirrored, 1 means mirrored.  In  mirrored  mode,  higher
           values  will be represented on the left side for "row" mode and at the top for "column" mode. Default
           is 0 (unmirrored).

       display_mode
           Set display mode for "waveform" and "levels".  It accepts the following values:

           parade
               Display separate graph for the color components side by side in "row" waveform mode or one  below
               the  other  in "column" waveform mode for "waveform" histogram mode. For "levels" histogram mode,
               per color component graphs are placed below each other.

               Using this display mode in "waveform" histogram mode makes it easy to spot  color  casts  in  the
               highlights and shadows of an image, by comparing the contours of the top and the bottom graphs of
               each waveform. Since whites, grays, and blacks are characterized by exactly equal amounts of red,
               green,  and  blue,  neutral  areas of the picture should display three waveforms of roughly equal
               width/height. If not, the correction is easy to perform by making  level  adjustments  the  three
               waveforms.

           overlay
               Presents information identical to that in the "parade", except that the graphs representing color
               components are superimposed directly over one another.

               This  display  mode  in "waveform" histogram mode makes it easier to spot relative differences or
               similarities in overlapping areas of the color components that are supposed to be identical, such
               as neutral whites, grays, or blacks.

           Default is "parade".

       levels_mode
           Set mode for "levels". Can be either "linear", or "logarithmic".  Default is "linear".

       components
           Set what color components to display for mode "levels".  Default is 7.

       Examples

       •   Calculate and draw histogram:

                   ffplay -i input -vf histogram

   hqdn3d
       This is a high precision/quality 3d denoise filter. It aims  to  reduce  image  noise,  producing  smooth
       images and making still images really still. It should enhance compressibility.

       It accepts the following optional parameters:

       luma_spatial
           A non-negative floating point number which specifies spatial luma strength.  It defaults to 4.0.

       chroma_spatial
           A  non-negative  floating  point  number  which  specifies  spatial  chroma strength.  It defaults to
           3.0*luma_spatial/4.0.

       luma_tmp
           A floating point number which specifies luma temporal strength. It defaults to 6.0*luma_spatial/4.0.

       chroma_tmp
           A  floating   point   number   which   specifies   chroma   temporal   strength.   It   defaults   to
           luma_tmp*chroma_spatial/luma_spatial.

   hqx
       Apply  a  high-quality magnification filter designed for pixel art. This filter was originally created by
       Maxim Stepin.

       It accepts the following option:

       n   Set the scaling dimension: 2 for "hq2x", 3 for "hq3x" and 4 for "hq4x".  Default is 3.

   hstack
       Stack input videos horizontally.

       All streams must be of same pixel format and of same height.

       Note that this filter is faster than using overlay and pad filter to create same output.

       The filter accept the following option:

       nb_inputs
           Set number of input streams. Default is 2.

   hue
       Modify the hue and/or the saturation of the input.

       It accepts the following parameters:

       h   Specify the hue angle as a number of degrees. It accepts an expression, and defaults to "0".

       s   Specify the saturation in the [-10,10] range. It accepts an expression and defaults to "1".

       H   Specify the hue angle as a number of radians. It accepts an expression, and defaults to "0".

       b   Specify the brightness in the [-10,10] range. It accepts an expression and defaults to "0".

       h and H are mutually exclusive, and can't be specified at the same time.

       The b, h, H and s option values are expressions containing the following constants:

       n   frame count of the input frame starting from 0

       pts presentation timestamp of the input frame expressed in time base units

       r   frame rate of the input video, NAN if the input frame rate is unknown

       t   timestamp expressed in seconds, NAN if the input timestamp is unknown

       tb  time base of the input video

       Examples

       •   Set the hue to 90 degrees and the saturation to 1.0:

                   hue=h=90:s=1

       •   Same command but expressing the hue in radians:

                   hue=H=PI/2:s=1

       •   Rotate hue and make the saturation swing between 0 and 2 over a period of 1 second:

                   hue="H=2*PI*t: s=sin(2*PI*t)+1"

       •   Apply a 3 seconds saturation fade-in effect starting at 0:

                   hue="s=min(t/3\,1)"

           The general fade-in expression can be written as:

                   hue="s=min(0\, max((t-START)/DURATION\, 1))"

       •   Apply a 3 seconds saturation fade-out effect starting at 5 seconds:

                   hue="s=max(0\, min(1\, (8-t)/3))"

           The general fade-out expression can be written as:

                   hue="s=max(0\, min(1\, (START+DURATION-t)/DURATION))"

       Commands

       This filter supports the following commands:

       b
       s
       h
       H   Modify the hue and/or the saturation and/or brightness of the input video.  The command  accepts  the
           same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

   idet
       Detect video interlacing type.

       This filter tries to detect if the input frames as interlaced, progressive, top or bottom field first. It
       will also try and detect fields that are repeated between adjacent frames (a sign of telecine).

       Single  frame detection considers only immediately adjacent frames when classifying each frame.  Multiple
       frame detection incorporates the classification history of previous frames.

       The filter will log these metadata values:

       single.current_frame
           Detected type of current frame using single-frame detection.  One  of:  ``tff''  (top  field  first),
           ``bff'' (bottom field first), ``progressive'', or ``undetermined''

       single.tff
           Cumulative number of frames detected as top field first using single-frame detection.

       multiple.tff
           Cumulative number of frames detected as top field first using multiple-frame detection.

       single.bff
           Cumulative number of frames detected as bottom field first using single-frame detection.

       multiple.current_frame
           Detected  type  of  current  frame using multiple-frame detection. One of: ``tff'' (top field first),
           ``bff'' (bottom field first), ``progressive'', or ``undetermined''

       multiple.bff
           Cumulative number of frames detected as bottom field first using multiple-frame detection.

       single.progressive
           Cumulative number of frames detected as progressive using single-frame detection.

       multiple.progressive
           Cumulative number of frames detected as progressive using multiple-frame detection.

       single.undetermined
           Cumulative number of frames that could not be classified using single-frame detection.

       multiple.undetermined
           Cumulative number of frames that could not be classified using multiple-frame detection.

       repeated.current_frame
           Which field in the current frame  is  repeated  from  the  last.  One  of  ``neither'',  ``top'',  or
           ``bottom''.

       repeated.neither
           Cumulative number of frames with no repeated field.

       repeated.top
           Cumulative number of frames with the top field repeated from the previous frame's top field.

       repeated.bottom
           Cumulative number of frames with the bottom field repeated from the previous frame's bottom field.

       The filter accepts the following options:

       intl_thres
           Set interlacing threshold.

       prog_thres
           Set progressive threshold.

       repeat_thres
           Threshold for repeated field detection.

       half_life
           Number  of  frames  after  which  a  given frame's contribution to the statistics is halved (i.e., it
           contributes only 0.5 to it's classification). The default of 0 means that all frames seen  are  given
           full weight of 1.0 forever.

       analyze_interlaced_flag
           When  this  is not 0 then idet will use the specified number of frames to determine if the interlaced
           flag is accurate, it will not count undetermined frames.  If the flag is found to be accurate it will
           be used without any further computations, if it is found to be inaccurate it will be cleared  without
           any  further  computations.  This  allows  inserting the idet filter as a low computational method to
           clean up the interlaced flag

   il
       Deinterleave or interleave fields.

       This filter allows one to process interlaced images fields  without  deinterlacing  them.  Deinterleaving
       splits  the  input  frame into 2 fields (so called half pictures). Odd lines are moved to the top half of
       the output image, even lines to the bottom half.  You can process (filter) them  independently  and  then
       re-interleave them.

       The filter accepts the following options:

       luma_mode, l
       chroma_mode, c
       alpha_mode, a
           Available values for luma_mode, chroma_mode and alpha_mode are:

           none
               Do nothing.

           deinterleave, d
               Deinterleave fields, placing one above the other.

           interleave, i
               Interleave fields. Reverse the effect of deinterleaving.

           Default value is "none".

       luma_swap, ls
       chroma_swap, cs
       alpha_swap, as
           Swap luma/chroma/alpha fields. Exchange even & odd lines. Default value is 0.

   inflate
       Apply inflate effect to the video.

       This  filter  replaces the pixel by the local(3x3) average by taking into account only values higher than
       the pixel.

       It accepts the following options:

       threshold0
       threshold1
       threshold2
       threshold3
           Limit the maximum change for each plane, default is 65535.  If 0, plane will remain unchanged.

   interlace
       Simple interlacing filter from progressive contents. This interleaves upper (or  lower)  lines  from  odd
       frames with lower (or upper) lines from even frames, halving the frame rate and preserving image height.

                  Original        Original             New Frame
                  Frame 'j'      Frame 'j+1'             (tff)
                 ==========      ===========       ==================
                   Line 0  -------------------->    Frame 'j' Line 0
                   Line 1          Line 1  ---->   Frame 'j+1' Line 1
                   Line 2 --------------------->    Frame 'j' Line 2
                   Line 3          Line 3  ---->   Frame 'j+1' Line 3
                    ...             ...                   ...
               New Frame + 1 will be generated by Frame 'j+2' and Frame 'j+3' and so on

       It accepts the following optional parameters:

       scan
           This  determines  whether  the  interlaced  frame is taken from the even (tff - default) or odd (bff)
           lines of the progressive frame.

       lowpass
           Enable (default) or disable the vertical lowpass filter to avoid twitter interlacing and reduce moire
           patterns.

   kerndeint
       Deinterlace input video by applying Donald Graft's adaptive kernel deinterling. Work on interlaced  parts
       of a video to produce progressive frames.

       The description of the accepted parameters follows.

       thresh
           Set  the  threshold  which  affects  the  filter's tolerance when determining if a pixel line must be
           processed. It must be an integer in the range [0,255] and defaults to 10. A value of 0 will result in
           applying the process on every pixels.

       map Paint pixels exceeding the threshold value to white if set to 1.  Default is 0.

       order
           Set the fields order. Swap fields if set to 1, leave fields alone if 0. Default is 0.

       sharp
           Enable additional sharpening if set to 1. Default is 0.

       twoway
           Enable twoway sharpening if set to 1. Default is 0.

       Examples

       •   Apply default values:

                   kerndeint=thresh=10:map=0:order=0:sharp=0:twoway=0

       •   Enable additional sharpening:

                   kerndeint=sharp=1

       •   Paint processed pixels in white:

                   kerndeint=map=1

   lenscorrection
       Correct radial lens distortion

       This filter can be used to correct for radial distortion as can result from the use of wide angle lenses,
       and thereby re-rectify the image. To find the right parameters one can use tools available for example as
       part of opencv or simply trial-and-error.  To use opencv use the calibration sample  (under  samples/cpp)
       from the opencv sources and extract the k1 and k2 coefficients from the resulting matrix.

       Note  that  effectively  the same filter is available in the open-source tools Krita and Digikam from the
       KDE project.

       In contrast to the vignette filter, which can also  be  used  to  compensate  lens  errors,  this  filter
       corrects  the  distortion of the image, whereas vignette corrects the brightness distribution, so you may
       want to use both filters together in certain cases, though you will have to take care of  ordering,  i.e.
       whether vignetting should be applied before or after lens correction.

       Options

       The filter accepts the following options:

       cx  Relative x-coordinate of the focal point of the image, and thereby the center of the distortion. This
           value has a range [0,1] and is expressed as fractions of the image width.

       cy  Relative y-coordinate of the focal point of the image, and thereby the center of the distortion. This
           value has a range [0,1] and is expressed as fractions of the image height.

       k1  Coefficient of the quadratic correction term. 0.5 means no correction.

       k2  Coefficient of the double quadratic correction term. 0.5 means no correction.

       The formula that generates the correction is:

       r_src = r_tgt * (1 + k1 * (r_tgt / r_0)^2 + k2 * (r_tgt / r_0)^4)

       where  r_0  is  halve of the image diagonal and r_src and r_tgt are the distances from the focal point in
       the source and target images, respectively.

   lut3d
       Apply a 3D LUT to an input video.

       The filter accepts the following options:

       file
           Set the 3D LUT file name.

           Currently supported formats:

           3dl AfterEffects

           cube
               Iridas

           dat DaVinci

           m3d Pandora

       interp
           Select interpolation mode.

           Available values are:

           nearest
               Use values from the nearest defined point.

           trilinear
               Interpolate values using the 8 points defining a cube.

           tetrahedral
               Interpolate values using a tetrahedron.

   lut, lutrgb, lutyuv
       Compute a look-up table for binding each pixel component input value to an output value, and apply it  to
       the input video.

       lutyuv applies a lookup table to a YUV input video, lutrgb to an RGB input video.

       These filters accept the following parameters:

       c0  set first pixel component expression

       c1  set second pixel component expression

       c2  set third pixel component expression

       c3  set fourth pixel component expression, corresponds to the alpha component

       r   set red component expression

       g   set green component expression

       b   set blue component expression

       a   alpha component expression

       y   set Y/luminance component expression

       u   set U/Cb component expression

       v   set V/Cr component expression

       Each  of  them specifies the expression to use for computing the lookup table for the corresponding pixel
       component values.

       The exact component associated to each of the c* options depends on the format in input.

       The lut filter requires either YUV or RGB pixel formats in input, lutrgb requires RGB  pixel  formats  in
       input, and lutyuv requires YUV.

       The expressions can contain the following constants and functions:

       w
       h   The input width and height.

       val The input value for the pixel component.

       clipval
           The input value, clipped to the minval-maxval range.

       maxval
           The maximum value for the pixel component.

       minval
           The minimum value for the pixel component.

       negval
           The  negated  value for the pixel component value, clipped to the minval-maxval range; it corresponds
           to the expression "maxval-clipval+minval".

       clip(val)
           The computed value in val, clipped to the minval-maxval range.

       gammaval(gamma)
           The computed gamma correction value of the pixel component value, clipped to the minval-maxval range.
           It                  corresponds                  to                  the                   expression
           "pow((clipval-minval)/(maxval-minval)\,gamma)*(maxval-minval)+minval"

       All expressions default to "val".

       Examples

       •   Negate input video:

                   lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
                   lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"

           The above is the same as:

                   lutrgb="r=negval:g=negval:b=negval"
                   lutyuv="y=negval:u=negval:v=negval"

       •   Negate luminance:

                   lutyuv=y=negval

       •   Remove chroma components, turning the video into a graytone image:

                   lutyuv="u=128:v=128"

       •   Apply a luma burning effect:

                   lutyuv="y=2*val"

       •   Remove green and blue components:

                   lutrgb="g=0:b=0"

       •   Set a constant alpha channel value on input:

                   format=rgba,lutrgb=a="maxval-minval/2"

       •   Correct luminance gamma by a factor of 0.5:

                   lutyuv=y=gammaval(0.5)

       •   Discard least significant bits of luma:

                   lutyuv=y='bitand(val, 128+64+32)'

   mergeplanes
       Merge color channel components from several video streams.

       The filter accepts up to 4 input streams, and merge selected input planes to the output video.

       This filter accepts the following options:

       mapping
           Set input to output plane mapping. Default is 0.

           The  mappings  is  specified  as a bitmap. It should be specified as a hexadecimal number in the form
           0xAa[Bb[Cc[Dd]]]. 'Aa' describes the mapping for the first plane of the output stream. 'A'  sets  the
           number  of the input stream to use (from 0 to 3), and 'a' the plane number of the corresponding input
           to use (from 0 to 3). The rest of the mappings is similar, 'Bb' describes the mapping for the  output
           stream  second plane, 'Cc' describes the mapping for the output stream third plane and 'Dd' describes
           the mapping for the output stream fourth plane.

       format
           Set output pixel format. Default is "yuva444p".

       Examples

       •   Merge three gray video streams of same width and height into single video stream:

                   [a0][a1][a2]mergeplanes=0x001020:yuv444p

       •   Merge 1st yuv444p stream and 2nd gray video stream into yuva444p video stream:

                   [a0][a1]mergeplanes=0x00010210:yuva444p

       •   Swap Y and A plane in yuva444p stream:

                   format=yuva444p,mergeplanes=0x03010200:yuva444p

       •   Swap U and V plane in yuv420p stream:

                   format=yuv420p,mergeplanes=0x000201:yuv420p

       •   Cast a rgb24 clip to yuv444p:

                   format=rgb24,mergeplanes=0x000102:yuv444p

   mcdeint
       Apply motion-compensation deinterlacing.

       It needs one field per frame as input and must thus be used together with yadif=1/3 or equivalent.

       This filter accepts the following options:

       mode
           Set the deinterlacing mode.

           It accepts one of the following values:

           fast
           medium
           slow
               use iterative motion estimation

           extra_slow
               like slow, but use multiple reference frames.

           Default value is fast.

       parity
           Set the picture field parity assumed for the input video. It must be one of the following values:

           0, tff
               assume top field first

           1, bff
               assume bottom field first

           Default value is bff.

       qp  Set per-block quantization parameter (QP) used by the internal encoder.

           Higher values should result in a smoother motion vector field but less  optimal  individual  vectors.
           Default value is 1.

   mpdecimate
       Drop frames that do not differ greatly from the previous frame in order to reduce frame rate.

       The  main  use of this filter is for very-low-bitrate encoding (e.g. streaming over dialup modem), but it
       could in theory be used for fixing movies that were inverse-telecined incorrectly.

       A description of the accepted options follows.

       max Set the maximum number of consecutive frames which can be  dropped  (if  positive),  or  the  minimum
           interval  between  dropped  frames (if negative). If the value is 0, the frame is dropped unregarding
           the number of previous sequentially dropped frames.

           Default value is 0.

       hi
       lo
       frac
           Set the dropping threshold values.

           Values for hi and lo are for 8x8 pixel blocks and represent actual  pixel  value  differences,  so  a
           threshold  of  64  corresponds  to  1  unit  of  difference  for  each  pixel, or the same spread out
           differently over the block.

           A frame is a candidate for dropping if no 8x8 blocks differ by more than a threshold of hi, and if no
           more than frac blocks (1 meaning the whole image) differ by more than a threshold of lo.

           Default value for hi is 64*12, default value for lo is 64*5, and default value for frac is 0.33.

   negate
       Negate input video.

       It accepts an integer in input; if non-zero it negates the alpha component (if  available).  The  default
       value in input is 0.

   noformat
       Force libavfilter not to use any of the specified pixel formats for the input to the next filter.

       It accepts the following parameters:

       pix_fmts
           A '|'-separated list of pixel format names, such as apix_fmts=yuv420p|monow|rgb24".

       Examples

       •   Force libavfilter to use a format different from yuv420p for the input to the vflip filter:

                   noformat=pix_fmts=yuv420p,vflip

       •   Convert the input video to any of the formats not contained in the list:

                   noformat=yuv420p|yuv444p|yuv410p

   noise
       Add noise on video input frame.

       The filter accepts the following options:

       all_seed
       c0_seed
       c1_seed
       c2_seed
       c3_seed
           Set  noise  seed  for  specific  pixel component or all pixel components in case of all_seed. Default
           value is 123457.

       all_strength, alls
       c0_strength, c0s
       c1_strength, c1s
       c2_strength, c2s
       c3_strength, c3s
           Set noise strength for specific pixel component or all pixel components in case all_strength. Default
           value is 0. Allowed range is [0, 100].

       all_flags, allf
       c0_flags, c0f
       c1_flags, c1f
       c2_flags, c2f
       c3_flags, c3f
           Set pixel component flags or set flags  for  all  components  if  all_flags.   Available  values  for
           component flags are:

           a   averaged temporal noise (smoother)

           p   mix random noise with a (semi)regular pattern

           t   temporal noise (noise pattern changes between frames)

           u   uniform noise (gaussian otherwise)

       Examples

       Add temporal and uniform noise to input video:

               noise=alls=20:allf=t+u

   null
       Pass the video source unchanged to the output.

   ocv
       Apply a video transform using libopencv.

       To   enable   this  filter,  install  the  libopencv  library  and  headers  and  configure  FFmpeg  with
       "--enable-libopencv".

       It accepts the following parameters:

       filter_name
           The name of the libopencv filter to apply.

       filter_params
           The parameters to pass to the libopencv filter. If not specified, the default values are assumed.

       Refer    to    the    official    libopencv    documentation    for     more     precise     information:
       <http://docs.opencv.org/master/modules/imgproc/doc/filtering.html>

       Several libopencv filters are supported; see the following subsections.

       dilate

       Dilate  an  image  by  using  a  specific  structuring element.  It corresponds to the libopencv function
       "cvDilate".

       It accepts the parameters: struct_el|nb_iterations.

       struct_el represents a structuring element, and has the syntax: colsxrows+anchor_xxanchor_y/shape

       cols and rows represent the number of columns and rows of the structuring element, anchor_x and  anchor_y
       the  anchor  point,  and  shape  the  shape  for  the structuring element. shape must be "rect", "cross",
       "ellipse", or "custom".

       If the value for shape is "custom", it must be followed by a string of the  form  "=filename".  The  file
       with name filename is assumed to represent a binary image, with each printable character corresponding to
       a bright pixel. When a custom shape is used, cols and rows are ignored, the number or columns and rows of
       the read file are assumed instead.

       The default value for struct_el is "3x3+0x0/rect".

       nb_iterations specifies the number of times the transform is applied to the image, and defaults to 1.

       Some examples:

               # Use the default values
               ocv=dilate

               # Dilate using a structuring element with a 5x5 cross, iterating two times
               ocv=filter_name=dilate:filter_params=5x5+2x2/cross|2

               # Read the shape from the file diamond.shape, iterating two times.
               # The file diamond.shape may contain a pattern of characters like this
               #   *
               #  ***
               # *****
               #  ***
               #   *
               # The specified columns and rows are ignored
               # but the anchor point coordinates are not
               ocv=dilate:0x0+2x2/custom=diamond.shape|2

       erode

       Erode  an  image  by  using  a  specific  structuring  element.  It corresponds to the libopencv function
       "cvErode".

       It accepts the parameters: struct_el:nb_iterations, with the same syntax  and  semantics  as  the  dilate
       filter.

       smooth

       Smooth the input video.

       The filter takes the following parameters: type|param1|param2|param3|param4.

       type  is  the  type  of  smooth  filter  to  apply,  and  must  be  one  of the following values: "blur",
       "blur_no_scale", "median", "gaussian", or "bilateral". The default value is "gaussian".

       The meaning of param1, param2, param3, and param4 depend on the smooth type.  param1  and  param2  accept
       integer positive values or 0. param3 and param4 accept floating point values.

       The default value for param1 is 3. The default value for the other parameters is 0.

       These parameters correspond to the parameters assigned to the libopencv function "cvSmooth".

   overlay
       Overlay one video on top of another.

       It  takes two inputs and has one output. The first input is the "main" video on which the second input is
       overlaid.

       It accepts the following parameters:

       A description of the accepted options follows.

       x
       y   Set the expression for the x and y coordinates of the overlaid video on the main video. Default value
           is "0" for both expressions. In case the expression is invalid, it is set to a  huge  value  (meaning
           that the overlay will not be displayed within the output visible area).

       eof_action
           The  action  to  take when EOF is encountered on the secondary input; it accepts one of the following
           values:

           repeat
               Repeat the last frame (the default).

           endall
               End both streams.

           pass
               Pass the main input through.

       eval
           Set when the expressions for x, and y are evaluated.

           It accepts the following values:

           init
               only evaluate expressions once during the filter initialization or when a command is processed

           frame
               evaluate expressions for each incoming frame

           Default value is frame.

       shortest
           If set to 1, force the output to terminate when the shortest input terminates. Default value is 0.

       format
           Set the format for the output video.

           It accepts the following values:

           yuv420
               force YUV420 output

           yuv422
               force YUV422 output

           yuv444
               force YUV444 output

           rgb force RGB output

           Default value is yuv420.

       rgb (deprecated)
           If set to 1, force the filter to accept inputs in the RGB color  space.  Default  value  is  0.  This
           option is deprecated, use format instead.

       repeatlast
           If set to 1, force the filter to draw the last overlay frame over the main input until the end of the
           stream. A value of 0 disables this behavior. Default value is 1.

       The x, and y expressions can contain the following parameters.

       main_w, W
       main_h, H
           The main input width and height.

       overlay_w, w
       overlay_h, h
           The overlay input width and height.

       x
       y   The computed values for x and y. They are evaluated for each new frame.

       hsub
       vsub
           horizontal  and  vertical  chroma  subsample  values  of the output format. For example for the pixel
           format "yuv422p" hsub is 2 and vsub is 1.

       n   the number of input frame, starting from 0

       pos the position in the file of the input frame, NAN if unknown

       t   The timestamp, expressed in seconds. It's NAN if the input timestamp is unknown.

       Note that the n, pos, t variables are available only when evaluation is done per frame, and will evaluate
       to NAN when eval is set to init.

       Be aware that frames are taken from each  input  video  in  timestamp  order,  hence,  if  their  initial
       timestamps  differ, it is a good idea to pass the two inputs through a setpts=PTS-STARTPTS filter to have
       them begin in the same zero timestamp, as the example for the movie filter does.

       You can chain together more overlays but you should test the efficiency of such approach.

       Commands

       This filter supports the following commands:

       x
       y   Modify the x and y of the overlay input.  The command accepts the same syntax  of  the  corresponding
           option.

           If the specified expression is not valid, it is kept at its current value.

       Examples

       •   Draw the overlay at 10 pixels from the bottom right corner of the main video:

                   overlay=main_w-overlay_w-10:main_h-overlay_h-10

           Using named options the example above becomes:

                   overlay=x=main_w-overlay_w-10:y=main_h-overlay_h-10

       •   Insert  a transparent PNG logo in the bottom left corner of the input, using the ffmpeg tool with the
           "-filter_complex" option:

                   ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output

       •   Insert 2 different transparent PNG logos (second logo on bottom right corner) using the ffmpeg tool:

                   ffmpeg -i input -i logo1 -i logo2 -filter_complex 'overlay=x=10:y=H-h-10,overlay=x=W-w-10:y=H-h-10' output

       •   Add a transparent color layer on top of the main video; "WxH" must specify the size of the main input
           to the overlay filter:

                   color=color=red@.3:size=WxH [over]; [in][over] overlay [out]

       •   Play an original video and a filtered version (here with the deshake filter) side by side  using  the
           ffplay tool:

                   ffplay input.avi -vf 'split[a][b]; [a]pad=iw*2:ih[src]; [b]deshake[filt]; [src][filt]overlay=w'

           The above command is the same as:

                   ffplay input.avi -vf 'split[b], pad=iw*2[src], [b]deshake, [src]overlay=w'

       •   Make  a  sliding  overlay  appearing from the left to the right top part of the screen starting since
           time 2:

                   overlay=x='if(gte(t,2), -w+(t-2)*20, NAN)':y=0

       •   Compose output by putting two input videos side to side:

                   ffmpeg -i left.avi -i right.avi -filter_complex "
                   nullsrc=size=200x100 [background];
                   [0:v] setpts=PTS-STARTPTS, scale=100x100 [left];
                   [1:v] setpts=PTS-STARTPTS, scale=100x100 [right];
                   [background][left]       overlay=shortest=1       [background+left];
                   [background+left][right] overlay=shortest=1:x=100 [left+right]
                   "

       •   Mask 10-20 seconds of a video by applying the delogo filter to a section

                   ffmpeg -i test.avi -codec:v:0 wmv2 -ar 11025 -b:v 9000k
                   -vf '[in]split[split_main][split_delogo];[split_delogo]trim=start=360:end=371,delogo=0:0:640:480[delogoed];[split_main][delogoed]overlay=eof_action=pass[out]'
                   masked.avi

       •   Chain several overlays in cascade:

                   nullsrc=s=200x200 [bg];
                   testsrc=s=100x100, split=4 [in0][in1][in2][in3];
                   [in0] lutrgb=r=0, [bg]   overlay=0:0     [mid0];
                   [in1] lutrgb=g=0, [mid0] overlay=100:0   [mid1];
                   [in2] lutrgb=b=0, [mid1] overlay=0:100   [mid2];
                   [in3] null,       [mid2] overlay=100:100 [out0]

   owdenoise
       Apply Overcomplete Wavelet denoiser.

       The filter accepts the following options:

       depth
           Set depth.

           Larger depth values will denoise lower frequency components more, but slow down filtering.

           Must be an int in the range 8-16, default is 8.

       luma_strength, ls
           Set luma strength.

           Must be a double value in the range 0-1000, default is 1.0.

       chroma_strength, cs
           Set chroma strength.

           Must be a double value in the range 0-1000, default is 1.0.

   pad
       Add paddings to the input image, and place the original input at the provided x, y coordinates.

       It accepts the following parameters:

       width, w
       height, h
           Specify an expression for the size of the output image with the paddings  added.  If  the  value  for
           width or height is 0, the corresponding input size is used for the output.

           The width expression can reference the value set by the height expression, and vice versa.

           The default value of width and height is 0.

       x
       y   Specify  the offsets to place the input image at within the padded area, with respect to the top/left
           border of the output image.

           The x expression can reference the value set by the y expression, and vice versa.

           The default value of x and y is 0.

       color
           Specify the color of the padded area. For the syntax of this option, check the "Color" section in the
           ffmpeg-utils manual.

           The default value of color is "black".

       The value for the width, height, x, and y options are expressions containing the following constants:

       in_w
       in_h
           The input video width and height.

       iw
       ih  These are the same as in_w and in_h.

       out_w
       out_h
           The output width and height (the size of the padded area), as  specified  by  the  width  and  height
           expressions.

       ow
       oh  These are the same as out_w and out_h.

       x
       y   The x and y offsets as specified by the x and y expressions, or NAN if not yet specified.

       a   same as iw / ih

       sar input sample aspect ratio

       dar input display aspect ratio, it is the same as (iw / ih) * sar

       hsub
       vsub
           The  horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub
           is 2 and vsub is 1.

       Examples

       •   Add paddings with the color "violet" to the input video. The output video size is  640x480,  and  the
           top-left corner of the input video is placed at column 0, row 40

                   pad=640:480:0:40:violet

           The example above is equivalent to the following command:

                   pad=width=640:height=480:x=0:y=40:color=violet

       •   Pad  the  input  to  get  an  output with dimensions increased by 3/2, and put the input video at the
           center of the padded area:

                   pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"

       •   Pad the input to get a squared output with size equal to the maximum value between  the  input  width
           and height, and put the input video at the center of the padded area:

                   pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"

       •   Pad the input to get a final w/h ratio of 16:9:

                   pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"

       •   In  case of anamorphic video, in order to set the output display aspect correctly, it is necessary to
           use sar in the expression, according to the relation:

                   (ih * X / ih) * sar = output_dar
                   X = output_dar / sar

           Thus the previous example needs to be modified to:

                   pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"

       •   Double the output size and put the input video in the bottom-right corner of the output padded area:

                   pad="2*iw:2*ih:ow-iw:oh-ih"

   palettegen
       Generate one palette for a whole video stream.

       It accepts the following options:

       max_colors
           Set the maximum number of colors to quantize in the palette.  Note: the palette  will  still  contain
           256 colors; the unused palette entries will be black.

       reserve_transparent
           Create  a  palette  of  255  colors  maximum and reserve the last one for transparency. Reserving the
           transparency color is useful for GIF optimization.  If not set, the maximum of colors in the  palette
           will be 256. You probably want to disable this option for a standalone image.  Set by default.

       stats_mode
           Set statistics mode.

           It accepts the following values:

           full
               Compute full frame histograms.

           diff
               Compute  histograms only for the part that differs from previous frame. This might be relevant to
               give more importance to the moving part of your input if the background is static.

           Default value is full.

       The filter also exports the frame metadata "lavfi.color_quant_ratio" ("nb_color_in / nb_color_out") which
       you can use to evaluate the degree of color quantization of the palette. This information is also visible
       at info logging level.

       Examples

       •   Generate a representative palette of a given video using ffmpeg:

                   ffmpeg -i input.mkv -vf palettegen palette.png

   paletteuse
       Use a palette to downsample an input video stream.

       The filter takes two inputs: one video stream and a palette. The palette must be a 256 pixels image.

       It accepts the following options:

       dither
           Select dithering mode. Available algorithms are:

           bayer
               Ordered 8x8 bayer dithering (deterministic)

           heckbert
               Dithering as defined by Paul Heckbert in 1982 (simple error diffusion).  Note: this dithering  is
               sometimes considered "wrong" and is included as a reference.

           floyd_steinberg
               Floyd and Steingberg dithering (error diffusion)

           sierra2
               Frankie Sierra dithering v2 (error diffusion)

           sierra2_4a
               Frankie Sierra dithering v2 "Lite" (error diffusion)

           Default is sierra2_4a.

       bayer_scale
           When  bayer  dithering  is  selected,  this  option  defines  the  scale of the pattern (how much the
           crosshatch pattern is visible). A low value means more visible pattern for less banding,  and  higher
           value means less visible pattern at the cost of more banding.

           The option must be an integer value in the range [0,5]. Default is 2.

       diff_mode
           If set, define the zone to process

           rectangle
               Only  the  changing  rectangle  will  be  reprocessed. This is similar to GIF cropping/offsetting
               compression mechanism. This option can be useful for speed  if  only  a  part  of  the  image  is
               changing,  and  has  use  cases  such  as  limiting the scope of the error diffusal dither to the
               rectangle that bounds the moving scene (it leads  to  more  deterministic  output  if  the  scene
               doesn't change much, and as a result less moving noise and better GIF compression).

           Default is none.

       Examples

       •   Use a palette (generated for example with palettegen) to encode a GIF using ffmpeg:

                   ffmpeg -i input.mkv -i palette.png -lavfi paletteuse output.gif

   perspective
       Correct perspective of video not recorded perpendicular to the screen.

       A description of the accepted parameters follows.

       x0
       y0
       x1
       y1
       x2
       y2
       x3
       y3  Set  coordinates  expression  for top left, top right, bottom left and bottom right corners.  Default
           values are "0:0:W:0:0:H:W:H" with which perspective will remain unchanged.  If the "sense" option  is
           set  to  "source",  then  the specified points will be sent to the corners of the destination. If the
           "sense" option is set to "destination", then the corners of the source will be sent to the  specified
           coordinates.

           The expressions can use the following variables:

           W
           H   the width and height of video frame.

       interpolation
           Set interpolation for perspective correction.

           It accepts the following values:

           linear
           cubic

           Default value is linear.

       sense
           Set interpretation of coordinate options.

           It accepts the following values:

           0, source
               Send point in the source specified by the given coordinates to the corners of the destination.

           1, destination
               Send  the  corners  of  the  source  to  the  point  in  the  destination  specified by the given
               coordinates.

               Default value is source.

   phase
       Delay interlaced video by one field time so that the field order changes.

       The intended use is to fix PAL movies that have been captured with the opposite field order to the  film-
       to-video transfer.

       A description of the accepted parameters follows.

       mode
           Set phase mode.

           It accepts the following values:

           t   Capture field order top-first, transfer bottom-first.  Filter will delay the bottom field.

           b   Capture field order bottom-first, transfer top-first.  Filter will delay the top field.

           p   Capture  and  transfer  with the same field order. This mode only exists for the documentation of
               the other options to refer to, but if you actually select  it,  the  filter  will  faithfully  do
               nothing.

           a   Capture  field  order determined automatically by field flags, transfer opposite.  Filter selects
               among t and b modes on a frame by frame basis using field  flags.  If  no  field  information  is
               available, then this works just like u.

           u   Capture  unknown or varying, transfer opposite.  Filter selects among t and b on a frame by frame
               basis by analyzing the images and selecting the alternative that produces best match between  the
               fields.

           T   Capture  top-first,  transfer  unknown  or  varying.   Filter  selects  among t and p using image
               analysis.

           B   Capture bottom-first, transfer unknown or varying.  Filter selects among  b  and  p  using  image
               analysis.

           A   Capture  determined by field flags, transfer unknown or varying.  Filter selects among t, b and p
               using field flags and image analysis. If no field information is available, then this works  just
               like U. This is the default mode.

           U   Both  capture  and  transfer  unknown  or  varying.   Filter selects among t, b and p using image
               analysis only.

   pixdesctest
       Pixel format descriptor test filter, mainly useful for internal testing. The output video should be equal
       to the input video.

       For example:

               format=monow, pixdesctest

       can be used to test the monowhite pixel format descriptor definition.

   pp
       Enable the specified chain of  postprocessing  subfilters  using  libpostproc.  This  library  should  be
       automatically selected with a GPL build ("--enable-gpl").  Subfilters must be separated by '/' and can be
       disabled  by  prepending a '-'.  Each subfilter and some options have a short and a long name that can be
       used interchangeably, i.e. dr/dering are the same.

       The filters accept the following options:

       subfilters
           Set postprocessing subfilters string.

       All subfilters share common options to determine their scope:

       a/autoq
           Honor the quality commands for this subfilter.

       c/chrom
           Do chrominance filtering, too (default).

       y/nochrom
           Do luminance filtering only (no chrominance).

       n/noluma
           Do chrominance filtering only (no luminance).

       These options can be appended after the subfilter name, separated by a '|'.

       Available subfilters are:

       hb/hdeblock[|difference[|flatness]]
           Horizontal deblocking filter

           difference
               Difference factor where higher values mean more deblocking (default: 32).

           flatness
               Flatness threshold where lower values mean more deblocking (default: 39).

       vb/vdeblock[|difference[|flatness]]
           Vertical deblocking filter

           difference
               Difference factor where higher values mean more deblocking (default: 32).

           flatness
               Flatness threshold where lower values mean more deblocking (default: 39).

       ha/hadeblock[|difference[|flatness]]
           Accurate horizontal deblocking filter

           difference
               Difference factor where higher values mean more deblocking (default: 32).

           flatness
               Flatness threshold where lower values mean more deblocking (default: 39).

       va/vadeblock[|difference[|flatness]]
           Accurate vertical deblocking filter

           difference
               Difference factor where higher values mean more deblocking (default: 32).

           flatness
               Flatness threshold where lower values mean more deblocking (default: 39).

       The horizontal and vertical deblocking filters share the difference and flatness values so you cannot set
       different horizontal and vertical thresholds.

       h1/x1hdeblock
           Experimental horizontal deblocking filter

       v1/x1vdeblock
           Experimental vertical deblocking filter

       dr/dering
           Deringing filter

       tn/tmpnoise[|threshold1[|threshold2[|threshold3]]], temporal noise reducer
           threshold1
               larger -> stronger filtering

           threshold2
               larger -> stronger filtering

           threshold3
               larger -> stronger filtering

       al/autolevels[:f/fullyrange], automatic brightness / contrast correction
           f/fullyrange
               Stretch luminance to "0-255".

       lb/linblenddeint
           Linear blend deinterlacing filter that deinterlaces the given block by filtering all lines with a "(1
           2 1)" filter.

       li/linipoldeint
           Linear interpolating deinterlacing filter that deinterlaces the given block by linearly interpolating
           every second line.

       ci/cubicipoldeint
           Cubic interpolating deinterlacing filter deinterlaces the  given  block  by  cubically  interpolating
           every second line.

       md/mediandeint
           Median  deinterlacing  filter  that deinterlaces the given block by applying a median filter to every
           second line.

       fd/ffmpegdeint
           FFmpeg deinterlacing filter that deinterlaces the given block by filtering every second line  with  a
           "(-1 4 2 4 -1)" filter.

       l5/lowpass5
           Vertically  applied  FIR  lowpass deinterlacing filter that deinterlaces the given block by filtering
           all lines with a "(-1 2 6 2 -1)" filter.

       fq/forceQuant[|quantizer]
           Overrides the quantizer table from the input with the constant quantizer you specify.

           quantizer
               Quantizer to use

       de/default
           Default pp filter combination ("hb|a,vb|a,dr|a")

       fa/fast
           Fast pp filter combination ("h1|a,v1|a,dr|a")

       ac  High quality pp filter combination ("ha|a|128|7,va|a,dr|a")

       Examples

       •   Apply horizontal and vertical deblocking, deringing and automatic brightness/contrast:

                   pp=hb/vb/dr/al

       •   Apply default filters without brightness/contrast correction:

                   pp=de/-al

       •   Apply default filters and temporal denoiser:

                   pp=default/tmpnoise|1|2|3

       •   Apply deblocking on luminance only, and switch vertical deblocking on or off automatically  depending
           on available CPU time:

                   pp=hb|y/vb|a

   pp7
       Apply  Postprocessing  filter  7.  It  is variant of the spp filter, similar to spp = 6 with 7 point DCT,
       where only the center sample is used after IDCT.

       The filter accepts the following options:

       qp  Force a constant quantization parameter. It accepts an integer in range 0 to  63.  If  not  set,  the
           filter will use the QP from the video stream (if available).

       mode
           Set thresholding mode. Available modes are:

           hard
               Set hard thresholding.

           soft
               Set soft thresholding (better de-ringing effect, but likely blurrier).

           medium
               Set medium thresholding (good results, default).

   psnr
       Obtain the average, maximum and minimum PSNR (Peak Signal to Noise Ratio) between two input videos.

       This  filter  takes  in  input  two  input videos, the first input is considered the "main" source and is
       passed unchanged to the output. The second input is used as a "reference" video for computing the PSNR.

       Both video inputs must have the same resolution and pixel format for this filter to work correctly.  Also
       it assumes that both inputs have the same number of frames, which are compared one by one.

       The obtained average PSNR is printed through the logging system.

       The  filter  stores  the  accumulated  MSE  (mean  squared  error)  of  each frame, and at the end of the
       processing it is averaged across all frames equally, and the following formula is applied to  obtain  the
       PSNR:

               PSNR = 10*log10(MAX^2/MSE)

       Where MAX is the average of the maximum values of each component of the image.

       The description of the accepted parameters follows.

       stats_file, f
           If specified the filter will use the named file to save the PSNR of each individual frame.

       The  file printed if stats_file is selected, contains a sequence of key/value pairs of the form key:value
       for each compared couple of frames.

       A description of each shown parameter follows:

       n   sequential number of the input frame, starting from 1

       mse_avg
           Mean Square Error pixel-by-pixel average difference of the compared frames,  averaged  over  all  the
           image components.

       mse_y, mse_u, mse_v, mse_r, mse_g, mse_g, mse_a
           Mean  Square  Error  pixel-by-pixel  average  difference  of  the  compared  frames for the component
           specified by the suffix.

       psnr_y, psnr_u, psnr_v, psnr_r, psnr_g, psnr_b, psnr_a
           Peak Signal to Noise ratio of the compared frames for the component specified by the suffix.

       For example:

               movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
               [main][ref] psnr="stats_file=stats.log" [out]

       On this example the input file being processed is compared with the  reference  file  ref_movie.mpg.  The
       PSNR of each individual frame is stored in stats.log.

   pullup
       Pulldown  reversal  (inverse  telecine)  filter,  capable of handling mixed hard-telecine, 24000/1001 fps
       progressive, and 30000/1001 fps progressive content.

       The pullup filter is designed to take advantage of future context in making its decisions. This filter is
       stateless in the sense that it does not lock onto a pattern to follow, but it instead  looks  forward  to
       the following fields in order to identify matches and rebuild progressive frames.

       To  produce  content  with an even framerate, insert the fps filter after pullup, use "fps=24000/1001" if
       the input frame rate is 29.97fps, "fps=24" for 30fps and the (rare) telecined 25fps input.

       The filter accepts the following options:

       jl
       jr
       jt
       jb  These options set the amount of "junk" to ignore at the left, right, top, and bottom  of  the  image,
           respectively.  Left and right are in units of 8 pixels, while top and bottom are in units of 2 lines.
           The default is 8 pixels on each side.

       sb  Set the strict breaks. Setting this option to 1 will reduce  the  chances  of  filter  generating  an
           occasional mismatched frame, but it may also cause an excessive number of frames to be dropped during
           high motion sequences.  Conversely, setting it to -1 will make filter match fields more easily.  This
           may  help  processing  of video where there is slight blurring between the fields, but may also cause
           there to be interlaced frames in the output.  Default value is 0.

       mp  Set the metric plane to use. It accepts the following values:

           l   Use luma plane.

           u   Use chroma blue plane.

           v   Use chroma red plane.

           This option may be set to use chroma plane instead of the  default  luma  plane  for  doing  filter's
           computations.  This may improve accuracy on very clean source material, but more likely will decrease
           accuracy, especially if there is chroma noise (rainbow effect) or  any  grayscale  video.   The  main
           purpose  of  setting mp to a chroma plane is to reduce CPU load and make pullup usable in realtime on
           slow machines.

       For best results (without duplicated frames in the output file) it is  necessary  to  change  the  output
       frame rate. For example, to inverse telecine NTSC input:

               ffmpeg -i input -vf pullup -r 24000/1001 ...

   qp
       Change video quantization parameters (QP).

       The filter accepts the following option:

       qp  Set expression for quantization parameter.

       The expression is evaluated through the eval API and can contain, among others, the following constants:

       known
           1 if index is not 129, 0 otherwise.

       qp  Sequentional index starting from -129 to 128.

       Examples

       •   Some equation like:

                   qp=2+2*sin(PI*qp)

   random
       Flush  video  frames from internal cache of frames into a random order.  No frame is discarded.  Inspired
       by frei0r nervous filter.

       frames
           Set size in number of frames of internal cache, in range from 2 to 512. Default is 30.

       seed
           Set seed for random number generator, must be an integer included between 0 and "UINT32_MAX". If  not
           specified,  or  if  explicitly set to less than 0, the filter will try to use a good random seed on a
           best effort basis.

   removegrain
       The removegrain filter is a spatial denoiser for progressive video.

       m0  Set mode for the first plane.

       m1  Set mode for the second plane.

       m2  Set mode for the third plane.

       m3  Set mode for the fourth plane.

       Range of mode is from 0 to 24. Description of each mode follows:

       0   Leave input plane unchanged. Default.

       1   Clips the pixel with the minimum and maximum of the 8 neighbour pixels.

       2   Clips the pixel with the second minimum and maximum of the 8 neighbour pixels.

       3   Clips the pixel with the third minimum and maximum of the 8 neighbour pixels.

       4   Clips the pixel with the fourth minimum and maximum of the 8 neighbour pixels.  This is equivalent to
           a median filter.

       5   Line-sensitive clipping giving the minimal change.

       6   Line-sensitive clipping, intermediate.

       7   Line-sensitive clipping, intermediate.

       8   Line-sensitive clipping, intermediate.

       9   Line-sensitive clipping on a line where the neighbours pixels are the closest.

       10  Replaces the target pixel with the closest neighbour.

       11  [1 2 1] horizontal and vertical kernel blur.

       12  Same as mode 11.

       13  Bob mode, interpolates top field from the line where the neighbours pixels are the closest.

       14  Bob mode, interpolates bottom field from the line where the neighbours pixels are the closest.

       15  Bob mode, interpolates top field. Same as 13 but with a more complicated interpolation formula.

       16  Bob mode, interpolates bottom field. Same as 14 but with a more complicated interpolation formula.

       17  Clips the pixel with the minimum and maximum of respectively the maximum and minimum of each pair  of
           opposite neighbour pixels.

       18  Line-sensitive  clipping  using opposite neighbours whose greatest distance from the current pixel is
           minimal.

       19  Replaces the pixel with the average of its 8 neighbours.

       20  Averages the 9 pixels ([1 1 1] horizontal and vertical blur).

       21  Clips pixels using the averages of opposite neighbour.

       22  Same as mode 21 but simpler and faster.

       23  Small edge and halo removal, but reputed useless.

       24  Similar as 23.

   removelogo
       Suppress a TV station logo, using an image file to determine which pixels comprise the logo. It works  by
       filling in the pixels that comprise the logo with neighboring pixels.

       The filter accepts the following options:

       filename, f
           Set  the  filter  bitmap  file, which can be any image format supported by libavformat. The width and
           height of the image file must match those of the video stream being processed.

       Pixels in the provided bitmap image with a value of zero are not considered part of  the  logo,  non-zero
       pixels  are  considered part of the logo. If you use white (255) for the logo and black (0) for the rest,
       you will be safe. For making the filter bitmap, it is recommended to take a screen  capture  of  a  black
       frame  with  the  logo  visible,  and  then using a threshold filter followed by the erode filter once or
       twice.

       If needed, little splotches can be fixed manually. Remember that if logo  pixels  are  not  covered,  the
       filter  quality  will be much reduced. Marking too many pixels as part of the logo does not hurt as much,
       but it will increase the amount of blurring needed  to  cover  over  the  image  and  will  destroy  more
       information than necessary, and extra pixels will slow things down on a large logo.

   repeatfields
       This  filter  uses  the  repeat_field flag from the Video ES headers and hard repeats fields based on its
       value.

   reverse, areverse
       Reverse a clip.

       Warning: This filter requires memory to buffer the entire clip, so trimming is suggested.

       Examples

       •   Take the first 5 seconds of a clip, and reverse it.

                   trim=end=5,reverse

   rotate
       Rotate video by an arbitrary angle expressed in radians.

       The filter accepts the following options:

       A description of the optional parameters follows.

       angle, a
           Set an expression for the angle by which to rotate the input video clockwise, expressed as  a  number
           of  radians.  A  negative  value will result in a counter-clockwise rotation. By default it is set to
           "0".

           This expression is evaluated for each frame.

       out_w, ow
           Set the output width expression, default value is "iw".   This  expression  is  evaluated  just  once
           during configuration.

       out_h, oh
           Set  the  output  height  expression,  default value is "ih".  This expression is evaluated just once
           during configuration.

       bilinear
           Enable bilinear interpolation if set to 1, a value of 0 disables it. Default value is 1.

       fillcolor, c
           Set the color used to fill the output area not covered by the rotated image. For the  general  syntax
           of  this option, check the "Color" section in the ffmpeg-utils manual. If the special value "none" is
           selected then no background is printed (useful for example if the background is never shown).

           Default value is "black".

       The expressions for the angle and the output size can contain the following constants and functions:

       n   sequential number of the input frame, starting from 0. It is always NAN before  the  first  frame  is
           filtered.

       t   time  in  seconds  of the input frame, it is set to 0 when the filter is configured. It is always NAN
           before the first frame is filtered.

       hsub
       vsub
           horizontal and vertical chroma subsample values. For example for the pixel format "yuv422p" hsub is 2
           and vsub is 1.

       in_w, iw
       in_h, ih
           the input video width and height

       out_w, ow
       out_h, oh
           the output width and height, that is the size of the padded area as specified by the width and height
           expressions

       rotw(a)
       roth(a)
           the minimal width/height required for completely containing the input video rotated by a radians.

           These are only available when computing the out_w and out_h expressions.

       Examples

       •   Rotate the input by PI/6 radians clockwise:

                   rotate=PI/6

       •   Rotate the input by PI/6 radians counter-clockwise:

                   rotate=-PI/6

       •   Rotate the input by 45 degrees clockwise:

                   rotate=45*PI/180

       •   Apply a constant rotation with period T, starting from an angle of PI/3:

                   rotate=PI/3+2*PI*t/T

       •   Make the input video rotation oscillating with a period of T seconds and an amplitude of A radians:

                   rotate=A*sin(2*PI/T*t)

       •   Rotate the video, output size is chosen so that the whole rotating input video is  always  completely
           contained in the output:

                   rotate='2*PI*t:ow=hypot(iw,ih):oh=ow'

       •   Rotate the video, reduce the output size so that no background is ever shown:

                   rotate=2*PI*t:ow='min(iw,ih)/sqrt(2)':oh=ow:c=none

       Commands

       The filter supports the following commands:

       a, angle
           Set the angle expression.  The command accepts the same syntax of the corresponding option.

           If the specified expression is not valid, it is kept at its current value.

   sab
       Apply Shape Adaptive Blur.

       The filter accepts the following options:

       luma_radius, lr
           Set  luma  blur  filter  strength,  must be a value in range 0.1-4.0, default value is 1.0. A greater
           value will result in a more blurred image, and in slower processing.

       luma_pre_filter_radius, lpfr
           Set luma pre-filter radius, must be a value in the 0.1-2.0 range, default value is 1.0.

       luma_strength, ls
           Set luma maximum difference between pixels to still be considered, must be a value in  the  0.1-100.0
           range, default value is 1.0.

       chroma_radius, cr
           Set  chroma  blur filter strength, must be a value in range 0.1-4.0. A greater value will result in a
           more blurred image, and in slower processing.

       chroma_pre_filter_radius, cpfr
           Set chroma pre-filter radius, must be a value in the 0.1-2.0 range.

       chroma_strength, cs
           Set chroma maximum difference between pixels to still be considered, must be a value in the 0.1-100.0
           range.

       Each chroma option value, if not explicitly specified, is set to the corresponding luma option value.

   scale
       Scale (resize) the input video, using the libswscale library.

       The scale filter forces the output display aspect ratio to be the same of  the  input,  by  changing  the
       output sample aspect ratio.

       If  the  input  image  format is different from the format requested by the next filter, the scale filter
       will convert the input to the requested format.

       Options

       The filter accepts the following options, or any of the options supported by the libswscale scaler.

       See the ffmpeg-scaler manual for the complete list of scaler options.

       width, w
       height, h
           Set the output video dimension expression. Default value is the input dimension.

           If the value is 0, the input width is used for the output.

           If one of the values is -1, the scale filter will use a value that maintains the aspect ratio of  the
           input image, calculated from the other specified dimension. If both of them are -1, the input size is
           used

           If  one  of  the  values  is -n with n > 1, the scale filter will also use a value that maintains the
           aspect ratio of the input image, calculated from the other specified dimension. After that  it  will,
           however, make sure that the calculated dimension is divisible by n and adjust the value if necessary.

           See below for the list of accepted constants for use in the dimension expression.

       interl
           Set the interlacing mode. It accepts the following values:

           1   Force interlaced aware scaling.

           0   Do not apply interlaced scaling.

           -1  Select  interlaced aware scaling depending on whether the source frames are flagged as interlaced
               or not.

           Default value is 0.

       flags
           Set libswscale scaling flags. See the ffmpeg-scaler manual for the complete list of  values.  If  not
           explicitly specified the filter applies the default flags.

       size, s
           Set the video size. For the syntax of this option, check the "Video size" section in the ffmpeg-utils
           manual.

       in_color_matrix
       out_color_matrix
           Set in/output YCbCr color space type.

           This  allows  the autodetected value to be overridden as well as allows forcing a specific value used
           for the output and encoder.

           If not specified, the color space type depends on the pixel format.

           Possible values:

           auto
               Choose automatically.

           bt709
               Format conforming to International Telecommunication Union (ITU) Recommendation BT.709.

           fcc Set color space conforming to the United States Federal Communications Commission (FCC)  Code  of
               Federal Regulations (CFR) Title 47 (2003) 73.682 (a).

           bt601
               Set color space conforming to:

               •   ITU Radiocommunication Sector (ITU-R) Recommendation BT.601

               •   ITU-R Rec. BT.470-6 (1998) Systems B, B1, and G

               •   Society of Motion Picture and Television Engineers (SMPTE) ST 170:2004

           smpte240m
               Set color space conforming to SMPTE ST 240:1999.

       in_range
       out_range
           Set in/output YCbCr sample range.

           This  allows  the autodetected value to be overridden as well as allows forcing a specific value used
           for the output and encoder. If not specified, the range depends on the pixel format. Possible values:

           auto
               Choose automatically.

           jpeg/full/pc
               Set full range (0-255 in case of 8-bit luma).

           mpeg/tv
               Set "MPEG" range (16-235 in case of 8-bit luma).

       force_original_aspect_ratio
           Enable decreasing or increasing output video width or height if necessary to keep the original aspect
           ratio. Possible values:

           disable
               Scale the video as specified and disable this feature.

           decrease
               The output video dimensions will automatically be decreased if needed.

           increase
               The output video dimensions will automatically be increased if needed.

           One useful instance of this option is  that  when  you  know  a  specific  device's  maximum  allowed
           resolution, you can use this to limit the output video to that, while retaining the aspect ratio. For
           example,  device A allows 1280x720 playback, and your video is 1920x800. Using this option (set it to
           decrease) and specifying 1280x720 to the command line makes the output 1280x533.

           Please note that this is a different thing than specifying -1 for w or h, you still need  to  specify
           the output resolution for this option to work.

       The values of the w and h options are expressions containing the following constants:

       in_w
       in_h
           The input width and height

       iw
       ih  These are the same as in_w and in_h.

       out_w
       out_h
           The output (scaled) width and height

       ow
       oh  These are the same as out_w and out_h

       a   The same as iw / ih

       sar input sample aspect ratio

       dar The input display aspect ratio. Calculated from "(iw / ih) * sar".

       hsub
       vsub
           horizontal  and  vertical  input  chroma subsample values. For example for the pixel format "yuv422p"
           hsub is 2 and vsub is 1.

       ohsub
       ovsub
           horizontal and vertical output chroma subsample values. For example for the  pixel  format  "yuv422p"
           hsub is 2 and vsub is 1.

       Examples

       •   Scale the input video to a size of 200x100

                   scale=w=200:h=100

           This is equivalent to:

                   scale=200:100

           or:

                   scale=200x100

       •   Specify a size abbreviation for the output size:

                   scale=qcif

           which can also be written as:

                   scale=size=qcif

       •   Scale the input to 2x:

                   scale=w=2*iw:h=2*ih

       •   The above is the same as:

                   scale=2*in_w:2*in_h

       •   Scale the input to 2x with forced interlaced scaling:

                   scale=2*iw:2*ih:interl=1

       •   Scale the input to half size:

                   scale=w=iw/2:h=ih/2

       •   Increase the width, and set the height to the same size:

                   scale=3/2*iw:ow

       •   Seek Greek harmony:

                   scale=iw:1/PHI*iw
                   scale=ih*PHI:ih

       •   Increase the height, and set the width to 3/2 of the height:

                   scale=w=3/2*oh:h=3/5*ih

       •   Increase the size, making the size a multiple of the chroma subsample values:

                   scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"

       •   Increase the width to a maximum of 500 pixels, keeping the same aspect ratio as the input:

                   scale=w='min(500\, iw*3/2):h=-1'

       Commands

       This filter supports the following commands:

       width, w
       height, h
           Set  the output video dimension expression.  The command accepts the same syntax of the corresponding
           option.

           If the specified expression is not valid, it is kept at its current value.

   scale2ref
       Scale (resize) the input video, based on a reference video.

       See the scale filter for available options, scale2ref supports the same  but  uses  the  reference  video
       instead of the main input as basis.

       Examples

       •   Scale a subtitle stream (b) to match the main video (a) in size before overlaying

                   'scale2ref[b][a];[a][b]overlay'

   separatefields
       The  "separatefields"  takes  a frame-based video input and splits each frame into its components fields,
       producing a new half height clip with twice the frame rate and twice the frame count.

       This filter use field-dominance information in frame to decide which of each  pair  of  fields  to  place
       first in the output.  If it gets it wrong use setfield filter before "separatefields" filter.

   setdar, setsar
       The "setdar" filter sets the Display Aspect Ratio for the filter output video.

       This  is  done  by  changing  the  specified  Sample (aka Pixel) Aspect Ratio, according to the following
       equation:

               <DAR> = <HORIZONTAL_RESOLUTION> / <VERTICAL_RESOLUTION> * <SAR>

       Keep in mind that the "setdar" filter does not modify the pixel dimensions of the video frame. Also,  the
       display  aspect ratio set by this filter may be changed by later filters in the filterchain, e.g. in case
       of scaling or if another "setdar" or a "setsar" filter is applied.

       The "setsar" filter sets the Sample (aka Pixel) Aspect Ratio for the filter output video.

       Note that as a consequence of the application of this filter, the output display aspect ratio will change
       according to the equation above.

       Keep in mind that the sample aspect ratio set by the "setsar" filter may be changed by later  filters  in
       the filterchain, e.g. if another "setsar" or a "setdar" filter is applied.

       It accepts the following parameters:

       r, ratio, dar ("setdar" only), sar ("setsar" only)
           Set the aspect ratio used by the filter.

           The  parameter can be a floating point number string, an expression, or a string of the form num:den,
           where num and den are the numerator and denominator of the aspect ratio.  If  the  parameter  is  not
           specified, it is assumed the value "0".  In case the form "num:den" is used, the ":" character should
           be escaped.

       max Set  the  maximum  integer  value  to  use for expressing numerator and denominator when reducing the
           expressed aspect ratio to a rational.  Default value is 100.

       The parameter sar is an expression containing the following constants:

       E, PI, PHI
           These are approximated values for the mathematical constants e (Euler's number), pi (Greek  pi),  and
           phi (the golden ratio).

       w, h
           The input width and height.

       a   These are the same as w / h.

       sar The input sample aspect ratio.

       dar The input display aspect ratio. It is the same as (w / h) * sar.

       hsub, vsub
           Horizontal  and vertical chroma subsample values. For example, for the pixel format "yuv422p" hsub is
           2 and vsub is 1.

       Examples

       •   To change the display aspect ratio to 16:9, specify one of the following:

                   setdar=dar=1.77777
                   setdar=dar=16/9
                   setdar=dar=1.77777

       •   To change the sample aspect ratio to 10:11, specify:

                   setsar=sar=10/11

       •   To set a display aspect ratio of 16:9, and specify a maximum integer value  of  1000  in  the  aspect
           ratio reduction, use the command:

                   setdar=ratio=16/9:max=1000

   setfield
       Force field for the output video frame.

       The  "setfield" filter marks the interlace type field for the output frames. It does not change the input
       frame, but only sets the corresponding property, which affects how the  frame  is  treated  by  following
       filters (e.g. "fieldorder" or "yadif").

       The filter accepts the following options:

       mode
           Available values are:

           auto
               Keep the same field property.

           bff Mark the frame as bottom-field-first.

           tff Mark the frame as top-field-first.

           prog
               Mark the frame as progressive.

   showinfo
       Show a line containing various information for each input video frame.  The input video is not modified.

       The shown line contains a sequence of key/value pairs of the form key:value.

       The following values are shown in the output:

       n   The (sequential) number of the input frame, starting from 0.

       pts The  Presentation  TimeStamp  of  the input frame, expressed as a number of time base units. The time
           base unit depends on the filter input pad.

       pts_time
           The Presentation TimeStamp of the input frame, expressed as a number of seconds.

       pos The position of the frame in the input stream, or  -1  if  this  information  is  unavailable  and/or
           meaningless (for example in case of synthetic video).

       fmt The pixel format name.

       sar The sample aspect ratio of the input frame, expressed in the form num/den.

       s   The  size  of  the  input frame. For the syntax of this option, check the "Video size" section in the
           ffmpeg-utils manual.

       i   The type of interlaced mode ("P" for "progressive", "T" for top field first,  "B"  for  bottom  field
           first).

       iskey
           This is 1 if the frame is a key frame, 0 otherwise.

       type
           The picture type of the input frame ("I" for an I-frame, "P" for a P-frame, "B" for a B-frame, or "?"
           for  an  unknown  type).   Also  refer  to  the  documentation of the "AVPictureType" enum and of the
           "av_get_picture_type_char" function defined in libavutil/avutil.h.

       checksum
           The Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame.

       plane_checksum
           The Adler-32 checksum (printed in hexadecimal) of each plane of the input  frame,  expressed  in  the
           form "[c0 c1 c2 c3]".

   showpalette
       Displays the 256 colors palette of each frame. This filter is only relevant for pal8 pixel format frames.

       It accepts the following option:

       s   Set the size of the box used to represent one palette color entry. Default is 30 (for a "30x30" pixel
           box).

   shuffleplanes
       Reorder and/or duplicate video planes.

       It accepts the following parameters:

       map0
           The index of the input plane to be used as the first output plane.

       map1
           The index of the input plane to be used as the second output plane.

       map2
           The index of the input plane to be used as the third output plane.

       map3
           The index of the input plane to be used as the fourth output plane.

       The first plane has the index 0. The default is to keep the input unchanged.

       Swap the second and third planes of the input:

               ffmpeg -i INPUT -vf shuffleplanes=0:2:1:3 OUTPUT

   signalstats
       Evaluate  various  visual  metrics  that assist in determining issues associated with the digitization of
       analog video media.

       By default the filter will log these metadata values:

       YMIN
           Display the minimal Y value contained within the input frame. Expressed in range of [0-255].

       YLOW
           Display the Y value at the 10% percentile within the input frame. Expressed in range of [0-255].

       YAVG
           Display the average Y value within the input frame. Expressed in range of [0-255].

       YHIGH
           Display the Y value at the 90% percentile within the input frame. Expressed in range of [0-255].

       YMAX
           Display the maximum Y value contained within the input frame. Expressed in range of [0-255].

       UMIN
           Display the minimal U value contained within the input frame. Expressed in range of [0-255].

       ULOW
           Display the U value at the 10% percentile within the input frame. Expressed in range of [0-255].

       UAVG
           Display the average U value within the input frame. Expressed in range of [0-255].

       UHIGH
           Display the U value at the 90% percentile within the input frame. Expressed in range of [0-255].

       UMAX
           Display the maximum U value contained within the input frame. Expressed in range of [0-255].

       VMIN
           Display the minimal V value contained within the input frame. Expressed in range of [0-255].

       VLOW
           Display the V value at the 10% percentile within the input frame. Expressed in range of [0-255].

       VAVG
           Display the average V value within the input frame. Expressed in range of [0-255].

       VHIGH
           Display the V value at the 90% percentile within the input frame. Expressed in range of [0-255].

       VMAX
           Display the maximum V value contained within the input frame. Expressed in range of [0-255].

       SATMIN
           Display the minimal saturation value contained  within  the  input  frame.   Expressed  in  range  of
           [0-~181.02].

       SATLOW
           Display  the  saturation  value  at the 10% percentile within the input frame.  Expressed in range of
           [0-~181.02].

       SATAVG
           Display the average saturation value within the input frame. Expressed in range of [0-~181.02].

       SATHIGH
           Display the saturation value at the 90% percentile within the input frame.   Expressed  in  range  of
           [0-~181.02].

       SATMAX
           Display  the  maximum  saturation  value  contained  within  the  input frame.  Expressed in range of
           [0-~181.02].

       HUEMED
           Display the median value for hue within the input frame. Expressed in range of [0-360].

       HUEAVG
           Display the average value for hue within the input frame. Expressed in range of [0-360].

       YDIF
           Display the average of sample value difference between all values of the Y plane in the current frame
           and corresponding values of the previous input frame.  Expressed in range of [0-255].

       UDIF
           Display the average of sample value difference between all values of the U plane in the current frame
           and corresponding values of the previous input frame.  Expressed in range of [0-255].

       VDIF
           Display the average of sample value difference between all values of the V plane in the current frame
           and corresponding values of the previous input frame.  Expressed in range of [0-255].

       The filter accepts the following options:

       stat
       out stat specify an additional form of image analysis.  out output video with the specified type of pixel
           highlighted.

           Both options accept the following values:

           tout
               Identify temporal outliers pixels. A temporal outlier is a pixel unlike the neighboring pixels of
               the same field. Examples of temporal outliers include the results of video dropouts, head  clogs,
               or tape tracking issues.

           vrep
               Identify  vertical  line  repetition.  Vertical  line  repetition includes similar rows of pixels
               within a frame. In born-digital video vertical line repetition is common,  but  this  pattern  is
               uncommon  in video digitized from an analog source. When it occurs in video that results from the
               digitization of an analog source it can indicate concealment from a dropout compensator.

           brng
               Identify pixels that fall outside of legal broadcast range.

       color, c
           Set the highlight color for the out option. The default color is yellow.

       Examples

       •   Output data of various video metrics:

                   ffprobe -f lavfi movie=example.mov,signalstats="stat=tout+vrep+brng" -show_frames

       •   Output specific data about the minimum and maximum values of the Y plane per frame:

                   ffprobe -f lavfi movie=example.mov,signalstats -show_entries frame_tags=lavfi.signalstats.YMAX,lavfi.signalstats.YMIN

       •   Playback video while highlighting pixels that are outside of broadcast range in red.

                   ffplay example.mov -vf signalstats="out=brng:color=red"

       •   Playback video with signalstats metadata drawn over the frame.

                   ffplay example.mov -vf signalstats=stat=brng+vrep+tout,drawtext=fontfile=FreeSerif.ttf:textfile=signalstat_drawtext.txt

           The contents of signalstat_drawtext.txt used in the command are:

                   time %{pts:hms}
                   Y (%{metadata:lavfi.signalstats.YMIN}-%{metadata:lavfi.signalstats.YMAX})
                   U (%{metadata:lavfi.signalstats.UMIN}-%{metadata:lavfi.signalstats.UMAX})
                   V (%{metadata:lavfi.signalstats.VMIN}-%{metadata:lavfi.signalstats.VMAX})
                   saturation maximum: %{metadata:lavfi.signalstats.SATMAX}

   smartblur
       Blur the input video without impacting the outlines.

       It accepts the following options:

       luma_radius, lr
           Set the luma radius. The option value must be a float number in the range  [0.1,5.0]  that  specifies
           the variance of the gaussian filter used to blur the image (slower if larger). Default value is 1.0.

       luma_strength, ls
           Set  the  luma  strength.  The  option  value  must  be  a  float number in the range [-1.0,1.0] that
           configures the blurring. A value included in [0.0,1.0] will blur the image whereas a  value  included
           in [-1.0,0.0] will sharpen the image. Default value is 1.0.

       luma_threshold, lt
           Set  the  luma threshold used as a coefficient to determine whether a pixel should be blurred or not.
           The option value must be an integer in the range [-30,30]. A value of 0 will filter all the image,  a
           value  included  in  [0,30] will filter flat areas and a value included in [-30,0] will filter edges.
           Default value is 0.

       chroma_radius, cr
           Set the chroma radius. The option value must be a float number in the range [0.1,5.0] that  specifies
           the variance of the gaussian filter used to blur the image (slower if larger). Default value is 1.0.

       chroma_strength, cs
           Set  the  chroma  strength.  The  option  value  must  be a float number in the range [-1.0,1.0] that
           configures the blurring. A value included in [0.0,1.0] will blur the image whereas a  value  included
           in [-1.0,0.0] will sharpen the image. Default value is 1.0.

       chroma_threshold, ct
           Set the chroma threshold used as a coefficient to determine whether a pixel should be blurred or not.
           The  option value must be an integer in the range [-30,30]. A value of 0 will filter all the image, a
           value included in [0,30] will filter flat areas and a value included in [-30,0]  will  filter  edges.
           Default value is 0.

       If a chroma option is not explicitly set, the corresponding luma value is set.

   ssim
       Obtain the SSIM (Structural SImilarity Metric) between two input videos.

       This  filter  takes  in  input  two  input videos, the first input is considered the "main" source and is
       passed unchanged to the output. The second input is used as a "reference" video for computing the SSIM.

       Both video inputs must have the same resolution and pixel format for this filter to work correctly.  Also
       it assumes that both inputs have the same number of frames, which are compared one by one.

       The filter stores the calculated SSIM of each frame.

       The description of the accepted parameters follows.

       stats_file, f
           If specified the filter will use the named file to save the SSIM of each individual frame.

       The  file printed if stats_file is selected, contains a sequence of key/value pairs of the form key:value
       for each compared couple of frames.

       A description of each shown parameter follows:

       n   sequential number of the input frame, starting from 1

       Y, U, V, R, G, B
           SSIM of the compared frames for the component specified by the suffix.

       All SSIM of the compared frames for the whole frame.

       dB  Same as above but in dB representation.

       For example:

               movie=ref_movie.mpg, setpts=PTS-STARTPTS [main];
               [main][ref] ssim="stats_file=stats.log" [out]

       On this example the input file being processed is compared with the  reference  file  ref_movie.mpg.  The
       SSIM of each individual frame is stored in stats.log.

       Another example with both psnr and ssim at same time:

               ffmpeg -i main.mpg -i ref.mpg -lavfi  "ssim;[0:v][1:v]psnr" -f null -

   stereo3d
       Convert between different stereoscopic image formats.

       The filters accept the following options:

       in  Set stereoscopic image format of input.

           Available values for input image formats are:

           sbsl
               side by side parallel (left eye left, right eye right)

           sbsr
               side by side crosseye (right eye left, left eye right)

           sbs2l
               side by side parallel with half width resolution (left eye left, right eye right)

           sbs2r
               side by side crosseye with half width resolution (right eye left, left eye right)

           abl above-below (left eye above, right eye below)

           abr above-below (right eye above, left eye below)

           ab2l
               above-below with half height resolution (left eye above, right eye below)

           ab2r
               above-below with half height resolution (right eye above, left eye below)

           al  alternating frames (left eye first, right eye second)

           ar  alternating frames (right eye first, left eye second)

               Default value is sbsl.

       out Set stereoscopic image format of output.

           Available values for output image formats are all the input formats as well as:

           arbg
               anaglyph red/blue gray (red filter on left eye, blue filter on right eye)

           argg
               anaglyph red/green gray (red filter on left eye, green filter on right eye)

           arcg
               anaglyph red/cyan gray (red filter on left eye, cyan filter on right eye)

           arch
               anaglyph red/cyan half colored (red filter on left eye, cyan filter on right eye)

           arcc
               anaglyph red/cyan color (red filter on left eye, cyan filter on right eye)

           arcd
               anaglyph red/cyan color optimized with the least squares projection of dubois (red filter on left
               eye, cyan filter on right eye)

           agmg
               anaglyph green/magenta gray (green filter on left eye, magenta filter on right eye)

           agmh
               anaglyph green/magenta half colored (green filter on left eye, magenta filter on right eye)

           agmc
               anaglyph green/magenta colored (green filter on left eye, magenta filter on right eye)

           agmd
               anaglyph  green/magenta color optimized with the least squares projection of dubois (green filter
               on left eye, magenta filter on right eye)

           aybg
               anaglyph yellow/blue gray (yellow filter on left eye, blue filter on right eye)

           aybh
               anaglyph yellow/blue half colored (yellow filter on left eye, blue filter on right eye)

           aybc
               anaglyph yellow/blue colored (yellow filter on left eye, blue filter on right eye)

           aybd
               anaglyph yellow/blue color optimized with the least squares projection of dubois  (yellow  filter
               on left eye, blue filter on right eye)

           irl interleaved rows (left eye has top row, right eye starts on next row)

           irr interleaved rows (right eye has top row, left eye starts on next row)

           ml  mono output (left eye only)

           mr  mono output (right eye only)

           Default value is arcd.

       Examples

       •   Convert input video from side by side parallel to anaglyph yellow/blue dubois:

                   stereo3d=sbsl:aybd

       •   Convert input video from above below (left eye above, right eye below) to side by side crosseye.

                   stereo3d=abl:sbsr

   spp
       Apply  a  simple postprocessing filter that compresses and decompresses the image at several (or - in the
       case of quality level 6 - all) shifts and average the results.

       The filter accepts the following options:

       quality
           Set quality. This option defines the number of levels for averaging. It accepts  an  integer  in  the
           range  0-6.  If  set to 0, the filter will have no effect. A value of 6 means the higher quality. For
           each increment of that value the speed drops by a factor of approximately 2.  Default value is 3.

       qp  Force a constant quantization parameter. If not set, the filter will use the QP from the video stream
           (if available).

       mode
           Set thresholding mode. Available modes are:

           hard
               Set hard thresholding (default).

           soft
               Set soft thresholding (better de-ringing effect, but likely blurrier).

       use_bframe_qp
           Enable the use of the QP from the B-Frames if set to 1. Using this option may cause flicker since the
           B-Frames have often larger QP. Default is 0 (not enabled).

   subtitles
       Draw subtitles on top of input video using the libass library.

       To enable compilation of this filter you need to configure FFmpeg  with  "--enable-libass".  This  filter
       also  requires  a  build  with  libavcodec  and  libavformat  to convert the passed subtitles file to ASS
       (Advanced Substation Alpha) subtitles format.

       The filter accepts the following options:

       filename, f
           Set the filename of the subtitle file to read. It must be specified.

       original_size
           Specify the size of the original video, the video for which the ASS file was composed. For the syntax
           of this option, check the "Video size" section in the ffmpeg-utils manual.  Due to a misdesign in ASS
           aspect ratio arithmetic, this is necessary to correctly scale the fonts if the aspect ratio has  been
           changed.

       fontsdir
           Set  a  directory  path containing fonts that can be used by the filter.  These fonts will be used in
           addition to whatever the font provider uses.

       charenc
           Set subtitles input character encoding. "subtitles" filter only. Only useful if not UTF-8.

       stream_index, si
           Set subtitles stream index. "subtitles" filter only.

       force_style
           Override default style or script info parameters of the subtitles. It accepts a string containing ASS
           style format "KEY=VALUE" couples separated by ",".

       If the first key is not specified, it is assumed that the first value specifies the filename.

       For example, to render the file sub.srt on top of the input video, use the command:

               subtitles=sub.srt

       which is equivalent to:

               subtitles=filename=sub.srt

       To render the default subtitles stream from file video.mkv, use:

               subtitles=video.mkv

       To render the second subtitles stream from that file, use:

               subtitles=video.mkv:si=1

       To make the subtitles stream from sub.srt appear in transparent green "DejaVu Serif", use:

               subtitles=sub.srt:force_style='FontName=DejaVu Serif,PrimaryColour=&HAA00FF00'

   super2xsai
       Scale the input by 2x and  smooth  using  the  Super2xSaI  (Scale  and  Interpolate)  pixel  art  scaling
       algorithm.

       Useful for enlarging pixel art images without reducing sharpness.

   swapuv
       Swap U & V plane.

   telecine
       Apply telecine process to the video.

       This filter accepts the following options:

       first_field
           top, t
               top field first

           bottom, b
               bottom field first The default value is "top".

       pattern
           A string of numbers representing the pulldown pattern you wish to apply.  The default value is 23.

               Some typical patterns:

               NTSC output (30i):
               27.5p: 32222
               24p: 23 (classic)
               24p: 2332 (preferred)
               20p: 33
               18p: 334
               16p: 3444

               PAL output (25i):
               27.5p: 12222
               24p: 222222222223 ("Euro pulldown")
               16.67p: 33
               16p: 33333334

   thumbnail
       Select the most representative frame in a given sequence of consecutive frames.

       The filter accepts the following options:

       n   Set  the  frames  batch  size to analyze; in a set of n frames, the filter will pick one of them, and
           then handle the next batch of n frames until the end. Default is 100.

       Since the filter keeps track of the whole frames sequence, a bigger n  value  will  result  in  a  higher
       memory usage, so a high value is not recommended.

       Examples

       •   Extract one picture each 50 frames:

                   thumbnail=50

       •   Complete example of a thumbnail creation with ffmpeg:

                   ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png

   tile
       Tile several successive frames together.

       The filter accepts the following options:

       layout
           Set  the  grid  size (i.e. the number of lines and columns). For the syntax of this option, check the
           "Video size" section in the ffmpeg-utils manual.

       nb_frames
           Set the maximum number of frames to render in the given area. It must be less than or equal  to  wxh.
           The default value is 0, meaning all the area will be used.

       margin
           Set the outer border margin in pixels.

       padding
           Set  the inner border thickness (i.e. the number of pixels between frames). For more advanced padding
           options (such as having different values for the edges), refer to the pad video filter.

       color
           Specify the color of the unused area. For the syntax of this option, check the "Color" section in the
           ffmpeg-utils manual. The default value of color is "black".

       Examples

       •   Produce 8x8 PNG tiles of all keyframes (-skip_frame nokey) in a movie:

                   ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png

           The -vsync 0 is necessary to prevent ffmpeg from duplicating each output  frame  to  accommodate  the
           originally detected frame rate.

       •   Display  5  pictures  in an area of "3x2" frames, with 7 pixels between them, and 2 pixels of initial
           margin, using mixed flat and named options:

                   tile=3x2:nb_frames=5:padding=7:margin=2

   tinterlace
       Perform various types of temporal field interlacing.

       Frames are counted starting from 1, so the first input frame is considered odd.

       The filter accepts the following options:

       mode
           Specify the mode of the interlacing. This option can also be specified as a value  alone.  See  below
           for a list of values for this option.

           Available values are:

           merge, 0
               Move odd frames into the upper field, even into the lower field, generating a double height frame
               at half frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444

                       Output:
                       11111                           33333
                       22222                           44444
                       11111                           33333
                       22222                           44444
                       11111                           33333
                       22222                           44444
                       11111                           33333
                       22222                           44444

           drop_odd, 1
               Only output even frames, odd frames are dropped, generating a frame with unchanged height at half
               frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444

                       Output:
                                       22222                           44444
                                       22222                           44444
                                       22222                           44444
                                       22222                           44444

           drop_even, 2
               Only output odd frames, even frames are dropped, generating a frame with unchanged height at half
               frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444

                       Output:
                       11111                           33333
                       11111                           33333
                       11111                           33333
                       11111                           33333

           pad, 3
               Expand  each  frame  to  full height, but pad alternate lines with black, generating a frame with
               double height at the same input frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444
                       11111           22222           33333           44444

                       Output:
                       11111           .....           33333           .....
                       .....           22222           .....           44444
                       11111           .....           33333           .....
                       .....           22222           .....           44444
                       11111           .....           33333           .....
                       .....           22222           .....           44444
                       11111           .....           33333           .....
                       .....           22222           .....           44444

           interleave_top, 4
               Interleave the upper field from odd frames with the lower field from even  frames,  generating  a
               frame with unchanged height at half frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111<-         22222           33333<-         44444
                       11111           22222<-         33333           44444<-
                       11111<-         22222           33333<-         44444
                       11111           22222<-         33333           44444<-

                       Output:
                       11111                           33333
                       22222                           44444
                       11111                           33333
                       22222                           44444

           interleave_bottom, 5
               Interleave  the  lower  field from odd frames with the upper field from even frames, generating a
               frame with unchanged height at half frame rate.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222<-         33333           44444<-
                       11111<-         22222           33333<-         44444
                       11111           22222<-         33333           44444<-
                       11111<-         22222           33333<-         44444

                       Output:
                       22222                           44444
                       11111                           33333
                       22222                           44444
                       11111                           33333

           interlacex2, 6
               Double frame rate with unchanged height. Frames are inserted each containing the second  temporal
               field  from the previous input frame and the first temporal field from the next input frame. This
               mode relies on the top_field_first flag. Useful for  interlaced  video  displays  with  no  field
               synchronisation.

                        ------> time
                       Input:
                       Frame 1         Frame 2         Frame 3         Frame 4

                       11111           22222           33333           44444
                        11111           22222           33333           44444
                       11111           22222           33333           44444
                        11111           22222           33333           44444

                       Output:
                       11111   22222   22222   33333   33333   44444   44444
                        11111   11111   22222   22222   33333   33333   44444
                       11111   22222   22222   33333   33333   44444   44444
                        11111   11111   22222   22222   33333   33333   44444

           Numeric values are deprecated but are accepted for backward compatibility reasons.

           Default mode is "merge".

       flags
           Specify flags influencing the filter process.

           Available value for flags is:

           low_pass_filter, vlfp
               Enable  vertical  low-pass filtering in the filter.  Vertical low-pass filtering is required when
               creating an interlaced destination  from  a  progressive  source  which  contains  high-frequency
               vertical detail. Filtering will reduce interlace 'twitter' and Moire patterning.

               Vertical low-pass filtering can only be enabled for mode interleave_top and interleave_bottom.

   transpose
       Transpose rows with columns in the input video and optionally flip it.

       It accepts the following parameters:

       dir Specify the transposition direction.

           Can assume the following values:

           0, 4, cclock_flip
               Rotate by 90 degrees counterclockwise and vertically flip (default), that is:

                       L.R     L.l
                       . . ->  . .
                       l.r     R.r

           1, 5, clock
               Rotate by 90 degrees clockwise, that is:

                       L.R     l.L
                       . . ->  . .
                       l.r     r.R

           2, 6, cclock
               Rotate by 90 degrees counterclockwise, that is:

                       L.R     R.r
                       . . ->  . .
                       l.r     L.l

           3, 7, clock_flip
               Rotate by 90 degrees clockwise and vertically flip, that is:

                       L.R     r.R
                       . . ->  . .
                       l.r     l.L

           For  values  between  4-7, the transposition is only done if the input video geometry is portrait and
           not landscape. These values are deprecated, the "passthrough" option should be used instead.

           Numerical values are deprecated, and should be dropped in favor of symbolic constants.

       passthrough
           Do not apply the transposition if the input geometry matches  the  one  specified  by  the  specified
           value. It accepts the following values:

           none
               Always apply transposition.

           portrait
               Preserve portrait geometry (when height >= width).

           landscape
               Preserve landscape geometry (when width >= height).

           Default value is "none".

       For example to rotate by 90 degrees clockwise and preserve portrait layout:

               transpose=dir=1:passthrough=portrait

       The command above can also be specified as:

               transpose=1:portrait

   trim
       Trim the input so that the output contains one continuous subpart of the input.

       It accepts the following parameters:

       start
           Specify  the  time  of the start of the kept section, i.e. the frame with the timestamp start will be
           the first frame in the output.

       end Specify the time of the first frame that will be dropped, i.e. the frame  immediately  preceding  the
           one with the timestamp end will be the last frame in the output.

       start_pts
           This  is  the same as start, except this option sets the start timestamp in timebase units instead of
           seconds.

       end_pts
           This is the same as end, except this option sets the end  timestamp  in  timebase  units  instead  of
           seconds.

       duration
           The maximum duration of the output in seconds.

       start_frame
           The number of the first frame that should be passed to the output.

       end_frame
           The number of the first frame that should be dropped.

       start,  end, and duration are expressed as time duration specifications; see the Time duration section in
       the ffmpeg-utils(1) manual for the accepted syntax.

       Note that the first two sets of the  start/end  options  and  the  duration  option  look  at  the  frame
       timestamp, while the _frame variants simply count the frames that pass through the filter. Also note that
       this  filter  does  not  modify  the  timestamps. If you wish for the output timestamps to start at zero,
       insert a setpts filter after the trim filter.

       If multiple start or end options are set, this filter tries to be greedy and keep  all  the  frames  that
       match  at  least one of the specified constraints. To keep only the part that matches all the constraints
       at once, chain multiple trim filters.

       The defaults are such that all the input is kept. So it is possible to set e.g.  just the end  values  to
       keep everything before the specified time.

       Examples:

       •   Drop everything except the second minute of input:

                   ffmpeg -i INPUT -vf trim=60:120

       •   Keep only the first second:

                   ffmpeg -i INPUT -vf trim=duration=1

   unsharp
       Sharpen or blur the input video.

       It accepts the following parameters:

       luma_msize_x, lx
           Set the luma matrix horizontal size. It must be an odd integer between 3 and 63. The default value is
           5.

       luma_msize_y, ly
           Set  the  luma matrix vertical size. It must be an odd integer between 3 and 63. The default value is
           5.

       luma_amount, la
           Set the luma effect strength. It must be a floating point number, reasonable values lay between  -1.5
           and 1.5.

           Negative  values  will  blur  the input video, while positive values will sharpen it, a value of zero
           will disable the effect.

           Default value is 1.0.

       chroma_msize_x, cx
           Set the chroma matrix horizontal size. It must be an odd integer between 3 and 63. The default  value
           is 5.

       chroma_msize_y, cy
           Set the chroma matrix vertical size. It must be an odd integer between 3 and 63. The default value is
           5.

       chroma_amount, ca
           Set  the  chroma  effect  strength. It must be a floating point number, reasonable values lay between
           -1.5 and 1.5.

           Negative values will blur the input video, while positive values will sharpen it,  a  value  of  zero
           will disable the effect.

           Default value is 0.0.

       opencl
           If  set  to  1,  specify  using  OpenCL  capabilities,  only  available if FFmpeg was configured with
           "--enable-opencl". Default value is 0.

       All parameters are optional and default to the equivalent of the string '5:5:1.0:5:5:0.0'.

       Examples

       •   Apply strong luma sharpen effect:

                   unsharp=luma_msize_x=7:luma_msize_y=7:luma_amount=2.5

       •   Apply a strong blur of both luma and chroma parameters:

                   unsharp=7:7:-2:7:7:-2

   uspp
       Apply ultra slow/simple postprocessing filter that compresses and decompresses the image at several (or -
       in the case of quality level 8 - all) shifts and average the results.

       The way this differs from the behavior of spp is that uspp actually encodes  &  decodes  each  case  with
       libavcodec Snow, whereas spp uses a simplified intra only 8x8 DCT similar to MJPEG.

       The filter accepts the following options:

       quality
           Set  quality.  This  option  defines the number of levels for averaging. It accepts an integer in the
           range 0-8. If set to 0, the filter will have no effect. A value of 8 means the  higher  quality.  For
           each increment of that value the speed drops by a factor of approximately 2.  Default value is 3.

       qp  Force a constant quantization parameter. If not set, the filter will use the QP from the video stream
           (if available).

   vectorscope
       Display 2 color component values in the two dimensional graph (which is called a vectorscope).

       This filter accepts the following options:

       mode, m
           Set vectorscope mode.

           It accepts the following values:

           gray
               Gray values are displayed on graph, higher brightness means more pixels have same component color
               value on location in graph. This is the default mode.

           color
               Gray  values  are  displayed  on  graph. Surrounding pixels values which are not present in video
               frame are drawn in gradient of 2 color components which are set by option "x" and "y".

           color2
               Actual color components values present in video frame are displayed on graph.

           color3
               Similar as color2 but higher frequency of same values "x" and "y" on  graph  increases  value  of
               another color component, which is luminance by default values of "x" and "y".

           color4
               Actual  colors present in video frame are displayed on graph. If two different colors map to same
               position on graph then color with higher value of component not present in graph is picked.

       x   Set which color component will be represented on X-axis. Default is 1.

       y   Set which color component will be represented on Y-axis. Default is 2.

       intensity, i
           Set intensity, used by modes: gray, color and color3 for increasing  brightness  of  color  component
           which represents frequency of (X, Y) location in graph.

       envelope, e
           none
               No envelope, this is default.

           instant
               Instant envelope, even darkest single pixel will be clearly highlighted.

           peak
               Hold  maximum and minimum values presented in graph over time. This way you can still spot out of
               range values without constantly looking at vectorscope.

           peak+instant
               Peak and instant envelope combined together.

   vidstabdetect
       Analyze video stabilization/deshaking. Perform pass 1 of 2, see vidstabtransform for pass 2.

       This filter generates  a  file  with  relative  translation  and  rotation  transform  information  about
       subsequent frames, which is then used by the vidstabtransform filter.

       To enable compilation of this filter you need to configure FFmpeg with "--enable-libvidstab".

       This filter accepts the following options:

       result
           Set the path to the file used to write the transforms information.  Default value is transforms.trf.

       shakiness
           Set  how  shaky  the video is and how quick the camera is. It accepts an integer in the range 1-10, a
           value of 1 means little shakiness, a value of 10 means strong shakiness. Default value is 5.

       accuracy
           Set the accuracy of the detection process. It must be a value in the range 1-15. A value of  1  means
           low accuracy, a value of 15 means high accuracy. Default value is 15.

       stepsize
           Set  stepsize  of  the  search process. The region around minimum is scanned with 1 pixel resolution.
           Default value is 6.

       mincontrast
           Set minimum contrast. Below this value a local measurement field is discarded.  Must  be  a  floating
           point value in the range 0-1. Default value is 0.3.

       tripod
           Set reference frame number for tripod mode.

           If  enabled,  the  motion  of  the  frames  is  compared to a reference frame in the filtered stream,
           identified by the specified number. The idea is to compensate all movements in a more-or-less  static
           scene and keep the camera view absolutely still.

           If set to 0, it is disabled. The frames are counted starting from 1.

       show
           Show  fields  and transforms in the resulting frames. It accepts an integer in the range 0-2. Default
           value is 0, which disables any visualization.

       Examples

       •   Use default values:

                   vidstabdetect

       •   Analyze strongly shaky movie and put the results in file mytransforms.trf:

                   vidstabdetect=shakiness=10:accuracy=15:result="mytransforms.trf"

       •   Visualize the result of internal transformations in the resulting video:

                   vidstabdetect=show=1

       •   Analyze a video with medium shakiness using ffmpeg:

                   ffmpeg -i input -vf vidstabdetect=shakiness=5:show=1 dummy.avi

   vidstabtransform
       Video stabilization/deshaking: pass 2 of 2, see vidstabdetect for pass 1.

       Read a file with transform information for each  frame  and  apply/compensate  them.  Together  with  the
       vidstabdetect  filter  this can be used to deshake videos. See also <http://public.hronopik.de/vid.stab>.
       It is important to also use the unsharp filter, see below.

       To enable compilation of this filter you need to configure FFmpeg with "--enable-libvidstab".

       Options

       input
           Set path to the file used to read the transforms. Default value is transforms.trf.

       smoothing
           Set the number of frames (value*2 + 1) used for lowpass filtering the camera movements. Default value
           is 10.

           For example a number of 10 means that 21 frames are used (10 in the past and 10  in  the  future)  to
           smoothen  the  motion  in  the  video.  A  larger  value  leads  to  a smoother video, but limits the
           acceleration of the camera (pan/tilt movements). 0 is  a  special  case  where  a  static  camera  is
           simulated.

       optalgo
           Set the camera path optimization algorithm.

           Accepted values are:

           gauss
               gaussian kernel low-pass filter on camera motion (default)

           avg averaging on transformations

       maxshift
           Set maximal number of pixels to translate frames. Default value is -1, meaning no limit.

       maxangle
           Set maximal angle in radians (degree*PI/180) to rotate frames. Default value is -1, meaning no limit.

       crop
           Specify how to deal with borders that may be visible due to movement compensation.

           Available values are:

           keep
               keep image information from previous frame (default)

           black
               fill the border black

       invert
           Invert transforms if set to 1. Default value is 0.

       relative
           Consider transforms as relative to previous frame if set to 1, absolute if set to 0. Default value is
           0.

       zoom
           Set percentage to zoom. A positive value will result in a zoom-in effect, a negative value in a zoom-
           out effect. Default value is 0 (no zoom).

       optzoom
           Set optimal zooming to avoid borders.

           Accepted values are:

           0   disabled

           1   optimal static zoom value is determined (only very strong movements will lead to visible borders)
               (default)

           2   optimal adaptive zoom value is determined (no borders will be visible), see zoomspeed

           Note that the value given at zoom is added to the one calculated here.

       zoomspeed
           Set  percent  to  zoom maximally each frame (enabled when optzoom is set to 2). Range is from 0 to 5,
           default value is 0.25.

       interpol
           Specify type of interpolation.

           Available values are:

           no  no interpolation

           linear
               linear only horizontal

           bilinear
               linear in both directions (default)

           bicubic
               cubic in both directions (slow)

       tripod
           Enable virtual tripod mode if set to 1, which  is  equivalent  to  "relative=0:smoothing=0".  Default
           value is 0.

           Use also "tripod" option of vidstabdetect.

       debug
           Increase  log  verbosity  if  set to 1. Also the detected global motions are written to the temporary
           file global_motions.trf. Default value is 0.

       Examples

       •   Use ffmpeg for a typical stabilization with default values:

                   ffmpeg -i inp.mpeg -vf vidstabtransform,unsharp=5:5:0.8:3:3:0.4 inp_stabilized.mpeg

           Note the use of the unsharp filter which is always recommended.

       •   Zoom in a bit more and load transform data from a given file:

                   vidstabtransform=zoom=5:input="mytransforms.trf"

       •   Smoothen the video even more:

                   vidstabtransform=smoothing=30

   vflip
       Flip the input video vertically.

       For example, to vertically flip a video with ffmpeg:

               ffmpeg -i in.avi -vf "vflip" out.avi

   vignette
       Make or reverse a natural vignetting effect.

       The filter accepts the following options:

       angle, a
           Set lens angle expression as a number of radians.

           The value is clipped in the "[0,PI/2]" range.

           Default value: "PI/5"

       x0
       y0  Set center coordinates expressions. Respectively "w/2" and "h/2" by default.

       mode
           Set forward/backward mode.

           Available modes are:

           forward
               The larger the distance from the central point, the darker the image becomes.

           backward
               The larger the distance from the central point, the brighter the image becomes.  This can be used
               to reverse a vignette effect, though there is no automatic detection to extract  the  lens  angle
               and other settings (yet). It can also be used to create a burning effect.

           Default value is forward.

       eval
           Set evaluation mode for the expressions (angle, x0, y0).

           It accepts the following values:

           init
               Evaluate expressions only once during the filter initialization.

           frame
               Evaluate  expressions  for  each  incoming  frame. This is way slower than the init mode since it
               requires all the scalers to be re-computed, but it allows advanced dynamic expressions.

           Default value is init.

       dither
           Set dithering to reduce the circular banding effects. Default is 1 (enabled).

       aspect
           Set vignette aspect. This setting allows one to adjust the shape of the vignette.  Setting this value
           to the SAR of the input will make a rectangular vignetting following the dimensions of the video.

           Default is "1/1".

       Expressions

       The alpha, x0 and y0 expressions can contain the following parameters.

       w
       h   input width and height

       n   the number of input frame, starting from 0

       pts the PTS (Presentation TimeStamp) time of the filtered video frame, expressed  in  TB  units,  NAN  if
           undefined

       r   frame rate of the input video, NAN if the input frame rate is unknown

       t   the PTS (Presentation TimeStamp) of the filtered video frame, expressed in seconds, NAN if undefined

       tb  time base of the input video

       Examples

       •   Apply simple strong vignetting effect:

                   vignette=PI/4

       •   Make a flickering vignetting:

                   vignette='PI/4+random(1)*PI/50':eval=frame

   vstack
       Stack input videos vertically.

       All streams must be of same pixel format and of same width.

       Note that this filter is faster than using overlay and pad filter to create same output.

       The filter accept the following option:

       nb_inputs
           Set number of input streams. Default is 2.

   w3fdif
       Deinterlace the input video ("w3fdif" stands for "Weston 3 Field Deinterlacing Filter").

       Based  on  the  process described by Martin Weston for BBC R&D, and implemented based on the de-interlace
       algorithm written by Jim Easterbrook for BBC R&D, the Weston 3 field  deinterlacing  filter  uses  filter
       coefficients calculated by BBC R&D.

       There  are  two  sets  of  filter  coefficients,  so  called "simple": and "complex". Which set of filter
       coefficients is used can be set by passing an optional parameter:

       filter
           Set the interlacing filter coefficients. Accepts one of the following values:

           simple
               Simple filter coefficient set.

           complex
               More-complex filter coefficient set.

           Default value is complex.

       deint
           Specify which frames to deinterlace. Accept one of the following values:

           all Deinterlace all frames,

           interlaced
               Only deinterlace frames marked as interlaced.

           Default value is all.

   waveform
       Video waveform monitor.

       The waveform monitor plots color component intensity. By default  luminance  only.  Each  column  of  the
       waveform corresponds to a column of pixels in the source video.

       It accepts the following options:

       mode, m
           Can  be  either  "row",  or  "column".  Default is "column".  In row mode, the graph on the left side
           represents color component value 0 and the right side represents value = 255. In column mode, the top
           side represents color component value = 0 and bottom side represents value = 255.

       intensity, i
           Set intensity. Smaller values are useful to find out how  many  values  of  the  same  luminance  are
           distributed across input rows/columns.  Default value is 0.04. Allowed range is [0, 1].

       mirror, r
           Set  mirroring  mode.  0 means unmirrored, 1 means mirrored.  In mirrored mode, higher values will be
           represented on the left side for "row"  mode  and  at  the  top  for  "column"  mode.  Default  is  1
           (mirrored).

       display, d
           Set display mode.  It accepts the following values:

           overlay
               Presents information identical to that in the "parade", except that the graphs representing color
               components are superimposed directly over one another.

               This  display  mode  makes  it easier to spot relative differences or similarities in overlapping
               areas of the color components that are supposed to be identical, such as neutral  whites,  grays,
               or blacks.

           parade
               Display separate graph for the color components side by side in "row" mode or one below the other
               in "column" mode.

               Using  this  display  mode  makes it easy to spot color casts in the highlights and shadows of an
               image, by comparing the contours of the top and the bottom graphs of each waveform. Since whites,
               grays, and blacks are characterized by exactly equal amounts of red,  green,  and  blue,  neutral
               areas  of  the  picture should display three waveforms of roughly equal width/height. If not, the
               correction is easy to perform by making level adjustments the three waveforms.

           Default is "parade".

       components, c
           Set which color components to display. Default  is  1,  which  means  only  luminance  or  red  color
           component  if  input  is  in  RGB  colorspace.  If is set for example to 7 it will display all 3 (if)
           available color components.

       envelope, e
           none
               No envelope, this is default.

           instant
               Instant envelope, minimum and maximum values presented in graph will be easily visible even  with
               small "step" value.

           peak
               Hold  minimum  and maximum values presented in graph across time. This way you can still spot out
               of range values without constantly looking at waveforms.

           peak+instant
               Peak and instant envelope combined together.

       filter, f
           lowpass
               No filtering, this is default.

           flat
               Luma and chroma combined together.

           aflat
               Similar as above, but shows difference between blue and red chroma.

           chroma
               Displays only chroma.

           achroma
               Similar as above, but shows difference between blue and red chroma.

           color
               Displays actual color value on waveform.

   xbr
       Apply the xBR high-quality magnification filter which is designed for pixel art.  It  follows  a  set  of
       edge-detection rules, see <http://www.libretro.com/forums/viewtopic.php?f=6&t=134>.

       It accepts the following option:

       n   Set the scaling dimension: 2 for "2xBR", 3 for "3xBR" and 4 for "4xBR".  Default is 3.

   yadif
       Deinterlace the input video ("yadif" means "yet another deinterlacing filter").

       It accepts the following parameters:

       mode
           The interlacing mode to adopt. It accepts one of the following values:

           0, send_frame
               Output one frame for each frame.

           1, send_field
               Output one frame for each field.

           2, send_frame_nospatial
               Like "send_frame", but it skips the spatial interlacing check.

           3, send_field_nospatial
               Like "send_field", but it skips the spatial interlacing check.

           The default value is "send_frame".

       parity
           The  picture  field  parity  assumed  for the input interlaced video. It accepts one of the following
           values:

           0, tff
               Assume the top field is first.

           1, bff
               Assume the bottom field is first.

           -1, auto
               Enable automatic detection of field parity.

           The default value is "auto".  If the interlacing is unknown or  the  decoder  does  not  export  this
           information, top field first will be assumed.

       deint
           Specify which frames to deinterlace. Accept one of the following values:

           0, all
               Deinterlace all frames.

           1, interlaced
               Only deinterlace frames marked as interlaced.

           The default value is "all".

   zoompan
       Apply Zoom & Pan effect.

       This filter accepts the following options:

       zoom, z
           Set the zoom expression. Default is 1.

       x
       y   Set the x and y expression. Default is 0.

       d   Set the duration expression in number of frames.  This sets for how many number of frames effect will
           last for single input image.

       s   Set the output image size, default is 'hd720'.

       Each expression can contain the following constants:

       in_w, iw
           Input width.

       in_h, ih
           Input height.

       out_w, ow
           Output width.

       out_h, oh
           Output height.

       in  Input frame count.

       on  Output frame count.

       x
       y   Last calculated 'x' and 'y' position from 'x' and 'y' expression for current input frame.

       px
       py  'x'  and  'y'  of  last  output  frame of previous input frame or 0 when there was not yet such frame
           (first input frame).

       zoom
           Last calculated zoom from 'z' expression for current input frame.

       pzoom
           Last calculated zoom of last output frame of previous input frame.

       duration
           Number of output frames for current input frame. Calculated from 'd' expression for each input frame.

       pduration
           number of output frames created for previous input frame

       a   Rational number: input width / input height

       sar sample aspect ratio

       dar display aspect ratio

       Examples

       •   Zoom-in up to 1.5 and pan at same time to some spot near center of picture:

                   zoompan=z='min(zoom+0.0015,1.5)':d=700:x='if(gte(zoom,1.5),x,x+1/a)':y='if(gte(zoom,1.5),y,y+1)':s=640x360

       •   Zoom-in up to 1.5 and pan always at center of picture:

                   zoompan=z='min(zoom+0.0015,1.5)':d=700:x='iw/2-(iw/zoom/2)':y='ih/2-(ih/zoom/2)'

VIDEO SOURCES

       Below is a description of the currently available video sources.

   buffer
       Buffer video frames, and make them available to the filter chain.

       This source is mainly intended for a programmatic use, in particular through  the  interface  defined  in
       libavfilter/vsrc_buffer.h.

       It accepts the following parameters:

       video_size
           Specify  the  size  (width  and  height) of the buffered video frames. For the syntax of this option,
           check the "Video size" section in the ffmpeg-utils manual.

       width
           The input video width.

       height
           The input video height.

       pix_fmt
           A string representing  the  pixel  format  of  the  buffered  video  frames.   It  may  be  a  number
           corresponding to a pixel format, or a pixel format name.

       time_base
           Specify the timebase assumed by the timestamps of the buffered frames.

       frame_rate
           Specify the frame rate expected for the video stream.

       pixel_aspect, sar
           The sample (pixel) aspect ratio of the input video.

       sws_param
           Specify  the optional parameters to be used for the scale filter which is automatically inserted when
           an input change is detected in the input size or format.

       For example:

               buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1

       will instruct the source to accept video frames with size 320x240 and  with  format  "yuv410p",  assuming
       1/24 as the timestamps timebase and square pixels (1:1 sample aspect ratio).  Since the pixel format with
       name   "yuv410p"   corresponds   to   the   number   6   (check  the  enum  AVPixelFormat  definition  in
       libavutil/pixfmt.h), this example corresponds to:

               buffer=size=320x240:pixfmt=6:time_base=1/24:pixel_aspect=1/1

       Alternatively, the options can be specified as a flat string, but this syntax is deprecated:

       width:height:pix_fmt:time_base.num:time_base.den:pixel_aspect.num:pixel_aspect.den[:sws_param]

   cellauto
       Create a pattern generated by an elementary cellular automaton.

       The initial state of the cellular automaton can be defined through the filename, and pattern options.  If
       such options are not specified an initial state is created randomly.

       At  each  new  frame  a  new  row  in  the video is filled with the result of the cellular automaton next
       generation. The behavior when the whole frame is filled is defined by the scroll option.

       This source accepts the following options:

       filename, f
           Read the initial cellular automaton state, i.e. the starting row, from the specified  file.   In  the
           file,  each  non-whitespace  character is considered an alive cell, a newline will terminate the row,
           and further characters in the file will be ignored.

       pattern, p
           Read the initial cellular automaton state, i.e. the starting row, from the specified string.

           Each non-whitespace character in the string is considered an alive cell, a newline will terminate the
           row, and further characters in the string will be ignored.

       rate, r
           Set the video rate, that is the number of frames generated per second.  Default is 25.

       random_fill_ratio, ratio
           Set the random fill ratio for the initial cellular automaton row. It is a floating point number value
           ranging from 0 to 1, defaults to 1/PHI.

           This option is ignored when a file or a pattern is specified.

       random_seed, seed
           Set the seed for filling randomly the initial  row,  must  be  an  integer  included  between  0  and
           UINT32_MAX.  If  not  specified, or if explicitly set to -1, the filter will try to use a good random
           seed on a best effort basis.

       rule
           Set the cellular automaton rule, it is a number ranging from 0 to 255.  Default value is 110.

       size, s
           Set the size of the output video. For the syntax of this option, check the "Video  size"  section  in
           the ffmpeg-utils manual.

           If filename or pattern is specified, the size is set by default to the width of the specified initial
           state row, and the height is set to width * PHI.

           If  size is set, it must contain the width of the specified pattern string, and the specified pattern
           will be centered in the larger row.

           If a filename or a pattern string is not specified, the size value defaults to "320x518" (used for  a
           randomly generated initial state).

       scroll
           If  set  to  1, scroll the output upward when all the rows in the output have been already filled. If
           set to 0, the new generated row will be written over the top row just after the bottom row is filled.
           Defaults to 1.

       start_full, full
           If set to 1, completely fill the output with generated rows before outputting the first frame.   This
           is the default behavior, for disabling set the value to 0.

       stitch
           If  set  to  1,  stitch  the  left  and  right row edges together.  This is the default behavior, for
           disabling set the value to 0.

       Examples

       •   Read the initial state from pattern, and specify an output of size 200x400.

                   cellauto=f=pattern:s=200x400

       •   Generate a random initial row with a width of 200 cells, with a fill ratio of 2/3:

                   cellauto=ratio=2/3:s=200x200

       •   Create a pattern generated by rule 18 starting by a single alive cell centered on an initial row with
           width 100:

                   cellauto=p=@s=100x400:full=0:rule=18

       •   Specify a more elaborated initial pattern:

                   cellauto=p='@@ @ @@':s=100x400:full=0:rule=18

   mandelbrot
       Generate a Mandelbrot set fractal, and progressively zoom towards the point specified  with  start_x  and
       start_y.

       This source accepts the following options:

       end_pts
           Set the terminal pts value. Default value is 400.

       end_scale
           Set the terminal scale value.  Must be a floating point value. Default value is 0.3.

       inner
           Set  the  inner  coloring  mode,  that  is the algorithm used to draw the Mandelbrot fractal internal
           region.

           It shall assume one of the following values:

           black
               Set black mode.

           convergence
               Show time until convergence.

           mincol
               Set color based on point closest to the origin of the iterations.

           period
               Set period mode.

           Default value is mincol.

       bailout
           Set the bailout value. Default value is 10.0.

       maxiter
           Set the maximum of iterations performed by the rendering algorithm. Default value is 7189.

       outer
           Set outer coloring mode.  It shall assume one of following values:

           iteration_count
               Set iteration cound mode.

           normalized_iteration_count
               set normalized iteration count mode.

           Default value is normalized_iteration_count.

       rate, r
           Set frame rate, expressed as number of frames per second. Default value is "25".

       size, s
           Set frame size. For the syntax of this option, check the "Video size"  section  in  the  ffmpeg-utils
           manual. Default value is "640x480".

       start_scale
           Set the initial scale value. Default value is 3.0.

       start_x
           Set  the  initial  x  position. Must be a floating point value between -100 and 100. Default value is
           -0.743643887037158704752191506114774.

       start_y
           Set the initial y position. Must be a floating point value between -100 and  100.  Default  value  is
           -0.131825904205311970493132056385139.

   mptestsrc
       Generate various test patterns, as generated by the MPlayer test filter.

       The  size  of  the  generated  video  is  fixed, and is 256x256.  This source is useful in particular for
       testing encoding features.

       This source accepts the following options:

       rate, r
           Specify the frame rate of the sourced video, as the number of frames generated per second. It has  to
           be  a  string in the format frame_rate_num/frame_rate_den, an integer number, a floating point number
           or a valid video frame rate abbreviation. The default value is "25".

       duration, d
           Set the duration of the sourced video. See the Time duration section in  the  ffmpeg-utils(1)  manual
           for the accepted syntax.

           If  not  specified,  or  the  expressed  duration  is negative, the video is supposed to be generated
           forever.

       test, t
           Set the number or the name of the test to perform. Supported tests are:

           dc_luma
           dc_chroma
           freq_luma
           freq_chroma
           amp_luma
           amp_chroma
           cbp
           mv
           ring1
           ring2
           all

           Default value is "all", which will cycle through the list of all tests.

       Some examples:

               mptestsrc=t=dc_luma

       will generate a "dc_luma" test pattern.

   frei0r_src
       Provide a frei0r source.

       To enable compilation of this filter you need to install the frei0r  header  and  configure  FFmpeg  with
       "--enable-frei0r".

       This source accepts the following parameters:

       size
           The  size  of the video to generate. For the syntax of this option, check the "Video size" section in
           the ffmpeg-utils manual.

       framerate
           The framerate of the generated video. It may be a  string  of  the  form  num/den  or  a  frame  rate
           abbreviation.

       filter_name
           The  name  to  the  frei0r  source  to load. For more information regarding frei0r and how to set the
           parameters, read the frei0r section in the video filters documentation.

       filter_params
           A '|'-separated list of parameters to pass to the frei0r source.

       For example, to generate a frei0r partik0l source with size 200x200 and frame rate 10 which  is  overlaid
       on the overlay filter main input:

               frei0r_src=size=200x200:framerate=10:filter_name=partik0l:filter_params=1234 [overlay]; [in][overlay] overlay

   life
       Generate a life pattern.

       This source is based on a generalization of John Conway's life game.

       The  sourced  input  represents  a  life  grid,  each  pixel represents a cell which can be in one of two
       possible states, alive or dead. Every cell interacts with its eight neighbours, which are the cells  that
       are horizontally, vertically, or diagonally adjacent.

       At  each  interaction  the  grid  evolves  according  to  the adopted rule, which specifies the number of
       neighbor alive cells which will make a cell stay alive or born. The rule option allows one to specify the
       rule to adopt.

       This source accepts the following options:

       filename, f
           Set the file from which to read the initial grid state. In the file, each non-whitespace character is
           considered an alive cell, and newline is used to delimit the end of each row.

           If this option is not specified, the initial grid is generated randomly.

       rate, r
           Set the video rate, that is the number of frames generated per second.  Default is 25.

       random_fill_ratio, ratio
           Set the random fill ratio for the initial random grid. It is a floating point  number  value  ranging
           from 0 to 1, defaults to 1/PHI.  It is ignored when a file is specified.

       random_seed, seed
           Set  the  seed  for  filling  the  initial  random  grid,  must  be an integer included between 0 and
           UINT32_MAX. If not specified, or if explicitly set to -1, the filter will try to use  a  good  random
           seed on a best effort basis.

       rule
           Set the life rule.

           A  rule  can be specified with a code of the kind "SNS/BNB", where NS and NB are sequences of numbers
           in the range 0-8, NS specifies the number of alive neighbor cells which make a live cell stay  alive,
           and  NB  the  number of alive neighbor cells which make a dead cell to become alive (i.e. to "born").
           "s" and "b" can be used in place of "S" and "B", respectively.

           Alternatively a rule can be specified by an 18-bits integer. The 9 high order bits are used to encode
           the next cell state if it is alive for each number of  neighbor  alive  cells,  the  low  order  bits
           specify  the  rule for "borning" new cells. Higher order bits encode for an higher number of neighbor
           cells.  For example the number 6153 = "(12<<9)+9" specifies a stay alive rule of 12 and a  born  rule
           of 9, which corresponds to "S23/B03".

           Default  value  is  "S23/B3",  which is the original Conway's game of life rule, and will keep a cell
           alive if it has 2 or 3 neighbor alive cells, and will born a new cell if there are three alive  cells
           around a dead cell.

       size, s
           Set  the  size  of the output video. For the syntax of this option, check the "Video size" section in
           the ffmpeg-utils manual.

           If filename is specified, the size is set by default to the same size of the input file. If  size  is
           set,  it must contain the size specified in the input file, and the initial grid defined in that file
           is centered in the larger resulting area.

           If a filename is not specified, the size value defaults to "320x240" (used for a  randomly  generated
           initial grid).

       stitch
           If  set  to  1,  stitch  the  left  and right grid edges together, and the top and bottom edges also.
           Defaults to 1.

       mold
           Set cell mold speed. If set, a dead cell will go from death_color to mold_color with a step of  mold.
           mold can have a value from 0 to 255.

       life_color
           Set the color of living (or new born) cells.

       death_color
           Set the color of dead cells. If mold is set, this is the first color used to represent a dead cell.

       mold_color
           Set mold color, for definitely dead and moldy cells.

           For the syntax of these 3 color options, check the "Color" section in the ffmpeg-utils manual.

       Examples

       •   Read a grid from pattern, and center it on a grid of size 300x300 pixels:

                   life=f=pattern:s=300x300

       •   Generate a random grid of size 200x200, with a fill ratio of 2/3:

                   life=ratio=2/3:s=200x200

       •   Specify a custom rule for evolving a randomly generated grid:

                   life=rule=S14/B34

       •   Full example with slow death effect (mold) using ffplay:

                   ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16

   allrgb, allyuv, color, haldclutsrc, nullsrc, rgbtestsrc, smptebars, smptehdbars, testsrc
       The "allrgb" source returns frames of size 4096x4096 of all rgb colors.

       The "allyuv" source returns frames of size 4096x4096 of all yuv colors.

       The "color" source provides an uniformly colored input.

       The "haldclutsrc" source provides an identity Hald CLUT. See also haldclut filter.

       The  "nullsrc"  source returns unprocessed video frames. It is mainly useful to be employed in analysis /
       debugging tools, or as the source for filters which ignore the input data.

       The "rgbtestsrc" source generates an RGB test pattern useful for detecting RGB vs BGR issues. You  should
       see a red, green and blue stripe from top to bottom.

       The  "smptebars"  source  generates  a  color  bars  pattern, based on the SMPTE Engineering Guideline EG
       1-1990.

       The "smptehdbars" source generates a color bars pattern, based on the SMPTE RP 219-2002.

       The "testsrc" source generates a test video pattern, showing a color pattern, a scrolling gradient and  a
       timestamp. This is mainly intended for testing purposes.

       The sources accept the following parameters:

       color, c
           Specify the color of the source, only available in the "color" source. For the syntax of this option,
           check the "Color" section in the ffmpeg-utils manual.

       level
           Specify  the  level  of  the  Hald  CLUT,  only available in the "haldclutsrc" source. A level of "N"
           generates a picture of "N*N*N" by "N*N*N" pixels to be used as identity matrix for 3D lookup  tables.
           Each component is coded on a "1/(N*N)" scale.

       size, s
           Specify  the size of the sourced video. For the syntax of this option, check the "Video size" section
           in the ffmpeg-utils manual.  The default value is "320x240".

           This option is not available with the "haldclutsrc" filter.

       rate, r
           Specify the frame rate of the sourced video, as the number of frames generated per second. It has  to
           be  a  string in the format frame_rate_num/frame_rate_den, an integer number, a floating point number
           or a valid video frame rate abbreviation. The default value is "25".

       sar Set the sample aspect ratio of the sourced video.

       duration, d
           Set the duration of the sourced video. See the Time duration section in  the  ffmpeg-utils(1)  manual
           for the accepted syntax.

           If  not  specified,  or  the  expressed  duration  is negative, the video is supposed to be generated
           forever.

       decimals, n
           Set the number of decimals to show in the timestamp, only available in the "testsrc" source.

           The displayed timestamp value will correspond to the original timestamp value multiplied by the power
           of 10 of the specified value. Default value is 0.

       For example the following:

               testsrc=duration=5.3:size=qcif:rate=10

       will generate a video with a duration of 5.3 seconds, with size 176x144 and a frame rate of 10 frames per
       second.

       The following graph description will generate a red source with an opacity of 0.2, with size "qcif" and a
       frame rate of 10 frames per second.

               color=c=red@0.2:s=qcif:r=10

       If the input content is to be ignored, "nullsrc" can be used. The following command  generates  noise  in
       the luminance plane by employing the "geq" filter:

               nullsrc=s=256x256, geq=random(1)*255:128:128

       Commands

       The "color" source supports the following commands:

       c, color
           Set the color of the created image. Accepts the same syntax of the corresponding color option.

VIDEO SINKS

       Below is a description of the currently available video sinks.

   buffersink
       Buffer video frames, and make them available to the end of the filter graph.

       This  sink  is  mainly  intended  for  programmatic  use,  in particular through the interface defined in
       libavfilter/buffersink.h or the options system.

       It accepts a pointer to an AVBufferSinkContext structure, which defines the incoming buffers' formats, to
       be passed as the opaque parameter to "avfilter_init_filter" for initialization.

   nullsink
       Null video sink: do absolutely nothing with the input video. It is mainly useful as a  template  and  for
       use in analysis / debugging tools.

MULTIMEDIA FILTERS

       Below is a description of the currently available multimedia filters.

   aphasemeter
       Convert input audio to a video output, displaying the audio phase.

       The filter accepts the following options:

       rate, r
           Set the output frame rate. Default value is 25.

       size, s
           Set  the  video size for the output. For the syntax of this option, check the "Video size" section in
           the ffmpeg-utils manual.  Default value is "800x400".

       rc
       gc
       bc  Specify the red, green, blue contrast. Default values are 2, 7 and 1.  Allowed range is "[0, 255]".

       mpc Set color which will be used for drawing median phase. If color is "none" which is default, no median
           phase value will be drawn.

       The filter also exports the frame metadata  "lavfi.aphasemeter.phase"  which  represents  mean  phase  of
       current  audio frame. Value is in range "[-1, 1]".  The "-1" means left and right channels are completely
       out of phase and 1 means channels are in phase.

   avectorscope
       Convert input audio to a video output, representing the audio vector scope.

       The filter is used to measure the difference between channels of stereo audio stream. A monoaural signal,
       consisting of identical left and right signal, results in straight vertical line. Any  stereo  separation
       is  visible  as  a  deviation from this line, creating a Lissajous figure.  If the straight (or deviation
       from it) but horizontal line appears this indicates that the left and right channels are out of phase.

       The filter accepts the following options:

       mode, m
           Set the vectorscope mode.

           Available values are:

           lissajous
               Lissajous rotated by 45 degrees.

           lissajous_xy
               Same as above but not rotated.

           polar
               Shape resembling half of circle.

           Default value is lissajous.

       size, s
           Set the video size for the output. For the syntax of this option, check the "Video size"  section  in
           the ffmpeg-utils manual.  Default value is "400x400".

       rate, r
           Set the output frame rate. Default value is 25.

       rc
       gc
       bc
       ac  Specify  the  red,  green,  blue and alpha contrast. Default values are 40, 160, 80 and 255.  Allowed
           range is "[0, 255]".

       rf
       gf
       bf
       af  Specify the red, green, blue and alpha fade. Default values are 15, 10, 5 and 5.   Allowed  range  is
           "[0, 255]".

       zoom
           Set the zoom factor. Default value is 1. Allowed range is "[1, 10]".

       Examples

       •   Complete example using ffplay:

                   ffplay -f lavfi 'amovie=input.mp3, asplit [a][out1];
                                [a] avectorscope=zoom=1.3:rc=2:gc=200:bc=10:rf=1:gf=8:bf=7 [out0]'

   concat
       Concatenate audio and video streams, joining them together one after the other.

       The  filter  works  on  segments of synchronized video and audio streams. All segments must have the same
       number of streams of each type, and that will also be the number of streams at output.

       The filter accepts the following options:

       n   Set the number of segments. Default is 2.

       v   Set the number of output video streams, that is also the number of video  streams  in  each  segment.
           Default is 1.

       a   Set  the  number  of  output audio streams, that is also the number of audio streams in each segment.
           Default is 0.

       unsafe
           Activate unsafe mode: do not fail if segments have a different format.

       The filter has v+a outputs: first v video outputs, then a audio outputs.

       There are nx(v+a) inputs: first the inputs for the first segment, in the same order as the outputs,  then
       the inputs for the second segment, etc.

       Related  streams  do not always have exactly the same duration, for various reasons including codec frame
       size or sloppy authoring. For that reason, related synchronized streams  (e.g.  a  video  and  its  audio
       track)  should  be concatenated at once. The concat filter will use the duration of the longest stream in
       each segment (except the last one), and if necessary pad shorter audio streams with silence.

       For this filter to work correctly, all segments must start at timestamp 0.

       All corresponding streams must have the same parameters  in  all  segments;  the  filtering  system  will
       automatically select a common pixel format for video streams, and a common sample format, sample rate and
       channel layout for audio streams, but other settings, such as resolution, must be converted explicitly by
       the user.

       Different  frame  rates  are  acceptable  but  will  result  in variable frame rate at output; be sure to
       configure the output file to handle it.

       Examples

       •   Concatenate an opening, an episode and an ending, all in bilingual version (video in stream 0,  audio
           in streams 1 and 2):

                   ffmpeg -i opening.mkv -i episode.mkv -i ending.mkv -filter_complex \
                     '[0:0] [0:1] [0:2] [1:0] [1:1] [1:2] [2:0] [2:1] [2:2]
                      concat=n=3:v=1:a=2 [v] [a1] [a2]' \
                     -map '[v]' -map '[a1]' -map '[a2]' output.mkv

       •   Concatenate two parts, handling audio and video separately, using the (a)movie sources, and adjusting
           the resolution:

                   movie=part1.mp4, scale=512:288 [v1] ; amovie=part1.mp4 [a1] ;
                   movie=part2.mp4, scale=512:288 [v2] ; amovie=part2.mp4 [a2] ;
                   [v1] [v2] concat [outv] ; [a1] [a2] concat=v=0:a=1 [outa]

           Note  that  a desync will happen at the stitch if the audio and video streams do not have exactly the
           same duration in the first file.

   ebur128
       EBU R128 scanner filter. This filter takes an audio stream as input and outputs it unchanged. By default,
       it logs a message at a frequency of 10Hz with the Momentary  loudness  (identified  by  "M"),  Short-term
       loudness ("S"), Integrated loudness ("I") and Loudness Range ("LRA").

       The  filter also has a video output (see the video option) with a real time graph to observe the loudness
       evolution. The graphic contains the logged message mentioned above, so it is  not  printed  anymore  when
       this  option  is  set,  unless the verbose logging is set. The main graphing area contains the short-term
       loudness (3 seconds of analysis), and the  gauge  on  the  right  is  for  the  momentary  loudness  (400
       milliseconds).

       More information about the Loudness Recommendation EBU R128 on <http://tech.ebu.ch/loudness>.

       The filter accepts the following options:

       video
           Activate the video output. The audio stream is passed unchanged whether this option is set or no. The
           video stream will be the first output stream if activated. Default is 0.

       size
           Set  the  video  size. This option is for video only. For the syntax of this option, check the "Video
           size" section in the ffmpeg-utils manual.  Default and minimum resolution is "640x480".

       meter
           Set the EBU scale meter. Default is 9. Common values are 9 and 18, respectively for EBU  scale  meter
           +9 and EBU scale meter +18. Any other integer value between this range is allowed.

       metadata
           Set metadata injection. If set to 1, the audio input will be segmented into 100ms output frames, each
           of them containing various loudness information in metadata.  All the metadata keys are prefixed with
           "lavfi.r128.".

           Default is 0.

       framelog
           Force the frame logging level.

           Available values are:

           info
               information logging level

           verbose
               verbose logging level

           By  default,  the  logging  level  is  set  to info. If the video or the metadata options are set, it
           switches to verbose.

       peak
           Set peak mode(s).

           Available modes can be cumulated (the option is a "flag" type). Possible values are:

           none
               Disable any peak mode (default).

           sample
               Enable sample-peak mode.

               Simple peak mode looking for  the  higher  sample  value.  It  logs  a  message  for  sample-peak
               (identified by "SPK").

           true
               Enable true-peak mode.

               If  enabled,  the  peak  lookup is done on an over-sampled version of the input stream for better
               peak accuracy. It logs a message for true-peak.  (identified by "TPK") and  true-peak  per  frame
               (identified by "FTPK").  This mode requires a build with "libswresample".

       Examples

       •   Real-time graph using ffplay, with a EBU scale meter +18:

                   ffplay -f lavfi -i "amovie=input.mp3,ebur128=video=1:meter=18 [out0][out1]"

       •   Run an analysis with ffmpeg:

                   ffmpeg -nostats -i input.mp3 -filter_complex ebur128 -f null -

   interleave, ainterleave
       Temporally interleave frames from several inputs.

       "interleave" works with video inputs, "ainterleave" with audio.

       These filters read frames from several inputs and send the oldest queued frame to the output.

       Input streams must have a well defined, monotonically increasing frame timestamp values.

       In  order to submit one frame to output, these filters need to enqueue at least one frame for each input,
       so they cannot work in case one input is not yet terminated and will not receive incoming frames.

       For example consider the case when one input is a "select" filter which always  drop  input  frames.  The
       "interleave"  filter  will  keep reading from that input, but it will never be able to send new frames to
       output until the input will send an end-of-stream signal.

       Also, depending on inputs synchronization, the filters will drop frames in case one input  receives  more
       frames than the other ones, and the queue is already filled.

       These filters accept the following options:

       nb_inputs, n
           Set the number of different inputs, it is 2 by default.

       Examples

       •   Interleave frames belonging to different streams using ffmpeg:

                   ffmpeg -i bambi.avi -i pr0n.mkv -filter_complex "[0:v][1:v] interleave" out.avi

       •   Add flickering blur effect:

                   select='if(gt(random(0), 0.2), 1, 2)':n=2 [tmp], boxblur=2:2, [tmp] interleave

   perms, aperms
       Set read/write permissions for the output frames.

       These  filters  are  mainly  aimed  at  developers  to  test  direct  path in the following filter in the
       filtergraph.

       The filters accept the following options:

       mode
           Select the permissions mode.

           It accepts the following values:

           none
               Do nothing. This is the default.

           ro  Set all the output frames read-only.

           rw  Set all the output frames directly writable.

           toggle
               Make the frame read-only if writable, and writable if read-only.

           random
               Set each output frame read-only or writable randomly.

       seed
           Set the seed for the random mode, must be an integer included between  0  and  "UINT32_MAX".  If  not
           specified,  or  if  explicitly  set  to "-1", the filter will try to use a good random seed on a best
           effort basis.

       Note: in case of auto-inserted filter between the permission filter and the following one, the permission
       might not be received as expected in that following filter. Inserting a format or aformat  filter  before
       the perms/aperms filter can avoid this problem.

   select, aselect
       Select frames to pass in output.

       This filter accepts the following options:

       expr, e
           Set expression, which is evaluated for each input frame.

           If the expression is evaluated to zero, the frame is discarded.

           If  the  evaluation result is negative or NaN, the frame is sent to the first output; otherwise it is
           sent to the output with index "ceil(val)-1", assuming that the input index starts from 0.

           For example a value of 1.2 corresponds to the output with index "ceil(1.2)-1 = 2-1 = 1", that is  the
           second output.

       outputs, n
           Set  the  number of outputs. The output to which to send the selected frame is based on the result of
           the evaluation. Default value is 1.

       The expression can contain the following constants:

       n   The (sequential) number of the filtered frame, starting from 0.

       selected_n
           The (sequential) number of the selected frame, starting from 0.

       prev_selected_n
           The sequential number of the last selected frame. It's NAN if undefined.

       TB  The timebase of the input timestamps.

       pts The PTS (Presentation TimeStamp) of the filtered video frame, expressed in  TB  units.  It's  NAN  if
           undefined.

       t   The PTS of the filtered video frame, expressed in seconds. It's NAN if undefined.

       prev_pts
           The PTS of the previously filtered video frame. It's NAN if undefined.

       prev_selected_pts
           The PTS of the last previously filtered video frame. It's NAN if undefined.

       prev_selected_t
           The PTS of the last previously selected video frame. It's NAN if undefined.

       start_pts
           The PTS of the first video frame in the video. It's NAN if undefined.

       start_t
           The time of the first video frame in the video. It's NAN if undefined.

       pict_type (video only)
           The type of the filtered frame. It can assume one of the following values:

           I
           P
           B
           S
           SI
           SP
           BI
       interlace_type (video only)
           The frame interlace type. It can assume one of the following values:

           PROGRESSIVE
               The frame is progressive (not interlaced).

           TOPFIRST
               The frame is top-field-first.

           BOTTOMFIRST
               The frame is bottom-field-first.

       consumed_sample_n (audio only)
           the number of selected samples before the current frame

       samples_n (audio only)
           the number of samples in the current frame

       sample_rate (audio only)
           the input sample rate

       key This is 1 if the filtered frame is a key-frame, 0 otherwise.

       pos the  position  in  the  file  of the filtered frame, -1 if the information is not available (e.g. for
           synthetic video)

       scene (video only)
           value between 0 and 1 to indicate a new scene; a low value reflects a low probability for the current
           frame to introduce a new scene, while a higher value means the current frame is more likely to be one
           (see the example below)

       The default value of the select expression is "1".

       Examples

       •   Select all frames in input:

                   select

           The example above is the same as:

                   select=1

       •   Skip all frames:

                   select=0

       •   Select only I-frames:

                   select='eq(pict_type\,I)'

       •   Select one frame every 100:

                   select='not(mod(n\,100))'

       •   Select only frames contained in the 10-20 time interval:

                   select=between(t\,10\,20)

       •   Select only I frames contained in the 10-20 time interval:

                   select=between(t\,10\,20)*eq(pict_type\,I)

       •   Select frames with a minimum distance of 10 seconds:

                   select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'

       •   Use aselect to select only audio frames with samples number > 100:

                   aselect='gt(samples_n\,100)'

       •   Create a mosaic of the first scenes:

                   ffmpeg -i video.avi -vf select='gt(scene\,0.4)',scale=160:120,tile -frames:v 1 preview.png

           Comparing scene against a value between 0.3 and 0.5 is generally a sane choice.

       •   Send even and odd frames to separate outputs, and compose them:

                   select=n=2:e='mod(n, 2)+1' [odd][even]; [odd] pad=h=2*ih [tmp]; [tmp][even] overlay=y=h

   sendcmd, asendcmd
       Send commands to filters in the filtergraph.

       These filters read commands to be sent to other filters in the filtergraph.

       "sendcmd" must be inserted between two video filters, "asendcmd"  must  be  inserted  between  two  audio
       filters, but apart from that they act the same way.

       The  specification  of commands can be provided in the filter arguments with the commands option, or in a
       file specified by the filename option.

       These filters accept the following options:

       commands, c
           Set the commands to be read and sent to the other filters.

       filename, f
           Set the filename of the commands to be read and sent to the other filters.

       Commands syntax

       A commands description consists of a sequence of interval specifications, comprising a list  of  commands
       to  be executed when a particular event related to that interval occurs. The occurring event is typically
       the current frame time entering or leaving a given time interval.

       An interval is specified by the following syntax:

               <START>[-<END>] <COMMANDS>;

       The time interval is specified by the START and END times.  END is optional and defaults to  the  maximum
       time.

       The  current  frame  time  is  considered within the specified interval if it is included in the interval
       [START, END), that is when the time is greater or equal to START and is lesser than END.

       COMMANDS consists of a sequence of one or more command specifications, separated by ",", relating to that
       interval.  The syntax of a command specification is given by:

               [<FLAGS>] <TARGET> <COMMAND> <ARG>

       FLAGS is optional and specifies the type of events relating to the time interval which enable sending the
       specified command, and must be a non-null sequence of identifier  flags  separated  by  "+"  or  "|"  and
       enclosed between "[" and "]".

       The following flags are recognized:

       enter
           The  command  is sent when the current frame timestamp enters the specified interval. In other words,
           the command is sent when the previous frame timestamp was not in the given interval, and the  current
           is.

       leave
           The  command  is sent when the current frame timestamp leaves the specified interval. In other words,
           the command is sent when the previous frame timestamp was in the given interval, and the  current  is
           not.

       If FLAGS is not specified, a default value of "[enter]" is assumed.

       TARGET  specifies  the  target  of the command, usually the name of the filter class or a specific filter
       instance name.

       COMMAND specifies the name of the command for the target filter.

       ARG is optional and specifies the optional list of argument for the given COMMAND.

       Between one interval specification and another, whitespaces, or sequences of characters starting with "#"
       until the end of line, are ignored and can be used to annotate comments.

       A simplified BNF description of the commands specification syntax follows:

               <COMMAND_FLAG>  ::= "enter" | "leave"
               <COMMAND_FLAGS> ::= <COMMAND_FLAG> [(+|"|")<COMMAND_FLAG>]
               <COMMAND>       ::= ["[" <COMMAND_FLAGS> "]"] <TARGET> <COMMAND> [<ARG>]
               <COMMANDS>      ::= <COMMAND> [,<COMMANDS>]
               <INTERVAL>      ::= <START>[-<END>] <COMMANDS>
               <INTERVALS>     ::= <INTERVAL>[;<INTERVALS>]

       Examples

       •   Specify audio tempo change at second 4:

                   asendcmd=c='4.0 atempo tempo 1.5',atempo

       •   Specify a list of drawtext and hue commands in a file.

                   # show text in the interval 5-10
                   5.0-10.0 [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=hello world',
                            [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=';

                   # desaturate the image in the interval 15-20
                   15.0-20.0 [enter] hue s 0,
                             [enter] drawtext reinit 'fontfile=FreeSerif.ttf:text=nocolor',
                             [leave] hue s 1,
                             [leave] drawtext reinit 'fontfile=FreeSerif.ttf:text=color';

                   # apply an exponential saturation fade-out effect, starting from time 25
                   25 [enter] hue s exp(25-t)

           A filtergraph allowing to read and process the above command list stored in a file test.cmd,  can  be
           specified with:

                   sendcmd=f=test.cmd,drawtext=fontfile=FreeSerif.ttf:text='',hue

   setpts, asetpts
       Change the PTS (presentation timestamp) of the input frames.

       "setpts" works on video frames, "asetpts" on audio frames.

       This filter accepts the following options:

       expr
           The expression which is evaluated for each frame to construct its timestamp.

       The expression is evaluated through the eval API and can contain the following constants:

       FRAME_RATE
           frame rate, only defined for constant frame-rate video

       PTS The presentation timestamp in input

       N   The  count  of the input frame for video or the number of consumed samples, not including the current
           frame for audio, starting from 0.

       NB_CONSUMED_SAMPLES
           The number of consumed samples, not including the current frame (only audio)

       NB_SAMPLES, S
           The number of samples in the current frame (only audio)

       SAMPLE_RATE, SR
           The audio sample rate.

       STARTPTS
           The PTS of the first frame.

       STARTT
           the time in seconds of the first frame

       INTERLACED
           State whether the current frame is interlaced.

       T   the time in seconds of the current frame

       POS original position in the file of the frame, or undefined if undefined for the current frame

       PREV_INPTS
           The previous input PTS.

       PREV_INT
           previous input time in seconds

       PREV_OUTPTS
           The previous output PTS.

       PREV_OUTT
           previous output time in seconds

       RTCTIME
           The wallclock (RTC) time in microseconds. This is deprecated, use time(0) instead.

       RTCSTART
           The wallclock (RTC) time at the start of the movie in microseconds.

       TB  The timebase of the input timestamps.

       Examples

       •   Start counting PTS from zero

                   setpts=PTS-STARTPTS

       •   Apply fast motion effect:

                   setpts=0.5*PTS

       •   Apply slow motion effect:

                   setpts=2.0*PTS

       •   Set fixed rate of 25 frames per second:

                   setpts=N/(25*TB)

       •   Set fixed rate 25 fps with some jitter:

                   setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'

       •   Apply an offset of 10 seconds to the input PTS:

                   setpts=PTS+10/TB

       •   Generate timestamps from a "live source" and rebase onto the current timebase:

                   setpts='(RTCTIME - RTCSTART) / (TB * 1000000)'

       •   Generate timestamps by counting samples:

                   asetpts=N/SR/TB

   settb, asettb
       Set the timebase to use for the output frames timestamps.  It  is  mainly  useful  for  testing  timebase
       configuration.

       It accepts the following parameters:

       expr, tb
           The expression which is evaluated into the output timebase.

       The  value  for  tb  is  an arithmetic expression representing a rational. The expression can contain the
       constants "AVTB" (the default timebase), "intb" (the input timebase) and "sr"  (the  sample  rate,  audio
       only). Default value is "intb".

       Examples

       •   Set the timebase to 1/25:

                   settb=expr=1/25

       •   Set the timebase to 1/10:

                   settb=expr=0.1

       •   Set the timebase to 1001/1000:

                   settb=1+0.001

       •   Set the timebase to 2*intb:

                   settb=2*intb

       •   Set the default timebase value:

                   settb=AVTB

   showcqt
       Convert  input  audio to a video output representing frequency spectrum logarithmically (using constant Q
       transform with Brown-Puckette algorithm), with musical tone scale, from E0 to D#10 (10 octaves).

       The filter accepts the following options:

       volume
           Specify transform volume (multiplier) expression. The expression can contain variables:

           frequency, freq, f
               the frequency where transform is evaluated

           timeclamp, tc
               value of timeclamp option

           and functions:

           a_weighting(f)
               A-weighting of equal loudness

           b_weighting(f)
               B-weighting of equal loudness

           c_weighting(f)
               C-weighting of equal loudness

           Default value is 16.

       tlength
           Specify transform length expression. The expression can contain variables:

           frequency, freq, f
               the frequency where transform is evaluated

           timeclamp, tc
               value of timeclamp option

           Default value is "384/f*tc/(384/f+tc)".

       timeclamp
           Specify the transform timeclamp. At low frequency, there is trade-off between accuracy in time domain
           and frequency domain. If timeclamp is lower, event in time  domain  is  represented  more  accurately
           (such as fast bass drum), otherwise event in frequency domain is represented more accurately (such as
           bass guitar). Acceptable value is [0.1, 1.0]. Default value is 0.17.

       coeffclamp
           Specify  the  transform  coeffclamp.  If  coeffclamp  is lower, transform is more accurate, otherwise
           transform is faster. Acceptable value is [0.1, 10.0].  Default value is 1.0.

       gamma
           Specify gamma. Lower gamma makes the spectrum more contrast, higher gamma makes the  spectrum  having
           more range. Acceptable value is [1.0, 7.0].  Default value is 3.0.

       gamma2
           Specify gamma of bargraph. Acceptable value is [1.0, 7.0].  Default value is 1.0.

       fontfile
           Specify font file for use with freetype. If not specified, use embedded font.

       fontcolor
           Specify  font  color  expression.  This  is  arithmetic  expression  that should return integer value
           0xRRGGBB. The expression can contain variables:

           frequency, freq, f
               the frequency where transform is evaluated

           timeclamp, tc
               value of timeclamp option

           and functions:

           midi(f)
               midi number of frequency f, some midi numbers: E0(16), C1(24), C2(36), A4(69)

           r(x), g(x), b(x)
               red, green, and blue value of intensity x

           Default value is "st(0,  (midi(f)-59.5)/12);  st(1,  if(between(ld(0),0,1),  0.5-0.5*cos(2*PI*ld(0)),
           0)); r(1-ld(1)) + b(ld(1))"

       fullhd
           If  set  to  1  (the  default), the video size is 1920x1080 (full HD), if set to 0, the video size is
           960x540. Use this option to make CPU usage lower.

       fps Specify video fps. Default value is 25.

       count
           Specify number of transform per frame, so there are fps*count transforms per second. Note that  audio
           data rate must be divisible by fps*count.  Default value is 6.

       Examples

       •   Playing audio while showing the spectrum:

                   ffplay -f lavfi 'amovie=a.mp3, asplit [a][out1]; [a] showcqt [out0]'

       •   Same as above, but with frame rate 30 fps:

                   ffplay -f lavfi 'amovie=a.mp3, asplit [a][out1]; [a] showcqt=fps=30:count=5 [out0]'

       •   Playing at 960x540 and lower CPU usage:

                   ffplay -f lavfi 'amovie=a.mp3, asplit [a][out1]; [a] showcqt=fullhd=0:count=3 [out0]'

       •   A1 and its harmonics: A1, A2, (near)E3, A3:

                   ffplay -f lavfi 'aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
                                    asplit[a][out1]; [a] showcqt [out0]'

       •   Same as above, but with more accuracy in frequency domain (and slower):

                   ffplay -f lavfi 'aevalsrc=0.1*sin(2*PI*55*t)+0.1*sin(4*PI*55*t)+0.1*sin(6*PI*55*t)+0.1*sin(8*PI*55*t),
                                    asplit[a][out1]; [a] showcqt=timeclamp=0.5 [out0]'

       •   B-weighting of equal loudness

                   volume=16*b_weighting(f)

       •   Lower Q factor

                   tlength=100/f*tc/(100/f+tc)

       •   Custom fontcolor, C-note is colored green, others are colored blue

                   fontcolor='if(mod(floor(midi(f)+0.5),12), 0x0000FF, g(1))'

       •   Custom gamma, now spectrum is linear to the amplitude.

                   gamma=2:gamma2=2

   showfreqs
       Convert  input audio to video output representing the audio power spectrum.  Audio amplitude is on Y-axis
       while frequency is on X-axis.

       The filter accepts the following options:

       size, s
           Specify size of video. For the syntax of this option, check the "Video size" section in  the  ffmpeg-
           utils manual.  Default is "1024x512".

       mode
           Set display mode.  This set how each frequency bin will be represented.

           It accepts the following values:

           line
           bar
           dot

           Default is "bar".

       ascale
           Set amplitude scale.

           It accepts the following values:

           lin Linear scale.

           sqrt
               Square root scale.

           cbrt
               Cubic root scale.

           log Logarithmic scale.

           Default is "log".

       fscale
           Set frequency scale.

           It accepts the following values:

           lin Linear scale.

           log Logarithmic scale.

           rlog
               Reverse logarithmic scale.

           Default is "lin".

       win_size
           Set window size.

           It accepts the following values:

           w16
           w32
           w64
           w128
           w256
           w512
           w1024
           w2048
           w4096
           w8192
           w16384
           w32768
           w65536

           Default is "w2048"

       win_func
           Set windowing function.

           It accepts the following values:

           rect
           bartlett
           hanning
           hamming
           blackman
           welch
           flattop
           bharris
           bnuttall
           bhann
           sine
           nuttall

           Default is "hanning".

       overlap
           Set  window overlap. In range "[0, 1]". Default is 1, which means optimal overlap for selected window
           function will be picked.

       averaging
           Set time averaging. Setting this to 0 will display current maximal peaks.  Default is 1, which  means
           time averaging is disabled.

       color
           Specify  list  of colors separated by space or by '|' which will be used to draw channel frequencies.
           Unrecognized or missing colors will be replaced by white color.

   showspectrum
       Convert input audio to a video output, representing the audio frequency spectrum.

       The filter accepts the following options:

       size, s
           Specify the video size for the output. For the syntax of this option, check the "Video size"  section
           in the ffmpeg-utils manual.  Default value is "640x512".

       slide
           Specify how the spectrum should slide along the window.

           It accepts the following values:

           replace
               the samples start again on the left when they reach the right

           scroll
               the samples scroll from right to left

           fullframe
               frames are only produced when the samples reach the right

           Default value is "replace".

       mode
           Specify display mode.

           It accepts the following values:

           combined
               all channels are displayed in the same row

           separate
               all channels are displayed in separate rows

           Default value is combined.

       color
           Specify display color mode.

           It accepts the following values:

           channel
               each channel is displayed in a separate color

           intensity
               each channel is is displayed using the same color scheme

           Default value is channel.

       scale
           Specify scale used for calculating intensity color values.

           It accepts the following values:

           lin linear

           sqrt
               square root, default

           cbrt
               cubic root

           log logarithmic

           Default value is sqrt.

       saturation
           Set  saturation modifier for displayed colors. Negative values provide alternative color scheme. 0 is
           no saturation at all.  Saturation must be in [-10.0, 10.0] range.  Default value is 1.

       win_func
           Set window function.

           It accepts the following values:

           none
               No samples pre-processing (do not expect this to be faster)

           hann
               Hann window

           hamming
               Hamming window

           blackman
               Blackman window

           Default value is "hann".

       The usage is very similar to the showwaves filter; see the examples in that section.

       Examples

       •   Large window with logarithmic color scaling:

                   showspectrum=s=1280x480:scale=log

       •   Complete example for a colored and sliding spectrum per channel using ffplay:

                   ffplay -f lavfi 'amovie=input.mp3, asplit [a][out1];
                                [a] showspectrum=mode=separate:color=intensity:slide=1:scale=cbrt [out0]'

   showvolume
       Convert input audio volume to a video output.

       The filter accepts the following options:

       rate, r
           Set video rate.

       b   Set border width, allowed range is [0, 5]. Default is 1.

       w   Set channel width, allowed range is [40, 1080]. Default is 400.

       h   Set channel height, allowed range is [1, 100]. Default is 20.

       f   Set fade, allowed range is [1, 255]. Default is 20.

       c   Set volume color expression.

           The expression can use the following variables:

           VOLUME
               Current max volume of channel in dB.

           CHANNEL
               Current channel number, starting from 0.

       t   If set, displays channel names. Default is enabled.

   showwaves
       Convert input audio to a video output, representing the samples waves.

       The filter accepts the following options:

       size, s
           Specify the video size for the output. For the syntax of this option, check the "Video size"  section
           in the ffmpeg-utils manual.  Default value is "600x240".

       mode
           Set display mode.

           Available values are:

           point
               Draw a point for each sample.

           line
               Draw a vertical line for each sample.

           p2p Draw a point for each sample and a line between them.

           cline
               Draw a centered vertical line for each sample.

           Default value is "point".

       n   Set  the  number  of  samples  which are printed on the same column. A larger value will decrease the
           frame rate. Must be a positive integer. This option can be set only if the  value  for  rate  is  not
           explicitly specified.

       rate, r
           Set the (approximate) output frame rate. This is done by setting the option n. Default value is "25".

       split_channels
           Set if channels should be drawn separately or overlap. Default value is 0.

       Examples

       •   Output the input file audio and the corresponding video representation at the same time:

                   amovie=a.mp3,asplit[out0],showwaves[out1]

       •   Create a synthetic signal and show it with showwaves, forcing a frame rate of 30 frames per second:

                   aevalsrc=sin(1*2*PI*t)*sin(880*2*PI*t):cos(2*PI*200*t),asplit[out0],showwaves=r=30[out1]

   showwavespic
       Convert input audio to a single video frame, representing the samples waves.

       The filter accepts the following options:

       size, s
           Specify  the video size for the output. For the syntax of this option, check the "Video size" section
           in the ffmpeg-utils manual.  Default value is "600x240".

       split_channels
           Set if channels should be drawn separately or overlap. Default value is 0.

       Examples

       •   Extract a channel split representation of the wave form of a whole audio track in a 1024x800  picture
           using ffmpeg:

                   ffmpeg -i audio.flac -lavfi showwavespic=split_channels=1:s=1024x800 waveform.png

   split, asplit
       Split input into several identical outputs.

       "asplit" works with audio input, "split" with video.

       The  filter accepts a single parameter which specifies the number of outputs. If unspecified, it defaults
       to 2.

       Examples

       •   Create two separate outputs from the same input:

                   [in] split [out0][out1]

       •   To create 3 or more outputs, you need to specify the number of outputs, like in:

                   [in] asplit=3 [out0][out1][out2]

       •   Create two separate outputs from the same input, one cropped and one padded:

                   [in] split [splitout1][splitout2];
                   [splitout1] crop=100:100:0:0    [cropout];
                   [splitout2] pad=200:200:100:100 [padout];

       •   Create 5 copies of the input audio with ffmpeg:

                   ffmpeg -i INPUT -filter_complex asplit=5 OUTPUT

   zmq, azmq
       Receive commands sent through a libzmq client, and forward them to filters in the filtergraph.

       "zmq" and "azmq" work as a pass-through filters. "zmq" must be inserted between two video filters, "azmq"
       between two audio filters.

       To enable these filters you need to install the libzmq library and  headers  and  configure  FFmpeg  with
       "--enable-libzmq".

       For more information about libzmq see: <http://www.zeromq.org/>

       The  "zmq"  and  "azmq"  filters  work as a libzmq server, which receives messages sent through a network
       interface defined by the bind_address option.

       The received message must be in the form:

               <TARGET> <COMMAND> [<ARG>]

       TARGET specifies the target of the command, usually the name of the filter class  or  a  specific  filter
       instance name.

       COMMAND specifies the name of the command for the target filter.

       ARG is optional and specifies the optional argument list for the given COMMAND.

       Upon  reception, the message is processed and the corresponding command is injected into the filtergraph.
       Depending on the result, the filter will send a reply to the client, adopting the format:

               <ERROR_CODE> <ERROR_REASON>
               <MESSAGE>

       MESSAGE is optional.

       Examples

       Look at tools/zmqsend for an example of a zmq client which can be used  to  send  commands  processed  by
       these filters.

       Consider the following filtergraph generated by ffplay

               ffplay -dumpgraph 1 -f lavfi "
               color=s=100x100:c=red  [l];
               color=s=100x100:c=blue [r];
               nullsrc=s=200x100, zmq [bg];
               [bg][l]   overlay      [bg+l];
               [bg+l][r] overlay=x=100 "

       To change the color of the left side of the video, the following command can be used:

               echo Parsed_color_0 c yellow | tools/zmqsend

       To change the right side:

               echo Parsed_color_1 c pink | tools/zmqsend

MULTIMEDIA SOURCES

       Below is a description of the currently available multimedia sources.

   amovie
       This is the same as movie source, except it selects an audio stream by default.

   movie
       Read audio and/or video stream(s) from a movie container.

       It accepts the following parameters:

       filename
           The  name  of  the  resource  to  read  (not  necessarily a file; it can also be a device or a stream
           accessed through some protocol).

       format_name, f
           Specifies the format assumed for the movie to read, and can be either the name of a container  or  an
           input device. If not specified, the format is guessed from movie_name or by probing.

       seek_point, sp
           Specifies  the  seek  point  in seconds. The frames will be output starting from this seek point. The
           parameter is evaluated with "av_strtod", so the numerical value may be suffixed by an IS postfix. The
           default value is "0".

       streams, s
           Specifies the streams to read. Several streams can be specified, separated by "+".  The  source  will
           then  have  as  many outputs, in the same order. The syntax is explained in the ``Stream specifiers''
           section in the ffmpeg manual. Two special names, "dv" and "da" specify respectively the default (best
           suited) video and audio stream. Default is "dv", or "da" if the filter is called as "amovie".

       stream_index, si
           Specifies the index of the video stream to read. If the value is -1, the most suitable  video  stream
           will  be  automatically  selected.  The  default  value  is "-1". Deprecated. If the filter is called
           "amovie", it will select audio instead of video.

       loop
           Specifies how many times to read the stream in sequence.  If the value is less  than  1,  the  stream
           will be read again and again.  Default value is "1".

           Note  that  when  the  movie is looped the source timestamps are not changed, so it will generate non
           monotonically increasing timestamps.

       It allows overlaying a second video on top of the main input of a filtergraph, as shown in this graph:

               input -----------> deltapts0 --> overlay --> output
                                                   ^
                                                   |
               movie --> scale--> deltapts1 -------+

       Examples

       •   Skip 3.2 seconds from the start of the AVI file in.avi, and overlay it on top of the  input  labelled
           "in":

                   movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [over];
                   [in] setpts=PTS-STARTPTS [main];
                   [main][over] overlay=16:16 [out]

       •   Read from a video4linux2 device, and overlay it on top of the input labelled "in":

                   movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [over];
                   [in] setpts=PTS-STARTPTS [main];
                   [main][over] overlay=16:16 [out]

       •   Read the first video stream and the audio stream with id 0x81 from dvd.vob; the video is connected to
           the pad named "video" and the audio is connected to the pad named "audio":

                   movie=dvd.vob:s=v:0+#0x81 [video] [audio]

SEE ALSO

       ffmpeg(1), ffplay(1), ffprobe(1), ffserver(1), libavfilter(3)

AUTHORS

       The FFmpeg developers.

       For  details  about  the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg),
       e.g. by typing the command git log in the FFmpeg source directory, or browsing the online  repository  at
       <http://source.ffmpeg.org>.

       Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

                                                                                               FFMPEG-FILTERS(1)