Provided by: ffmpeg_2.8.17-0ubuntu0.1_amd64 bug

NAME

       ffmpeg-formats - FFmpeg formats

DESCRIPTION

       This document describes the supported formats (muxers and demuxers) provided by the libavformat library.

FORMAT OPTIONS

       The libavformat library provides some generic global options, which can be set on all the muxers and
       demuxers. In addition each muxer or demuxer may support so-called private options, which are specific for
       that component.

       Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
       the "AVFormatContext" options or using the libavutil/opt.h API for programmatic use.

       The list of supported options follows:

       avioflags flags (input/output)
           Possible values:

           direct
               Reduce buffering.

       probesize integer (input)
           Set probing size in bytes, i.e. the size of the data to analyze to get stream information. A higher
           value will enable detecting more information in case it is dispersed into the stream, but will
           increase latency. Must be an integer not lesser than 32. It is 5000000 by default.

       packetsize integer (output)
           Set packet size.

       fflags flags (input/output)
           Set format flags.

           Possible values:

           ignidx
               Ignore index.

           fastseek
               Enable fast, but inaccurate seeks for some formats.

           genpts
               Generate PTS.

           nofillin
               Do not fill in missing values that can be exactly calculated.

           noparse
               Disable AVParsers, this needs "+nofillin" too.

           igndts
               Ignore DTS.

           discardcorrupt
               Discard corrupted frames.

           sortdts
               Try to interleave output packets by DTS.

           keepside
               Do not merge side data.

           latm
               Enable RTP MP4A-LATM payload.

           nobuffer
               Reduce the latency introduced by optional buffering

           bitexact
               Only write platform-, build- and time-independent data.  This ensures that file and data
               checksums are reproducible and match between platforms. Its primary use is for regression
               testing.

       seek2any integer (input)
           Allow seeking to non-keyframes on demuxer level when supported if set to 1.  Default is 0.

       analyzeduration integer (input)
           Specify how many microseconds are analyzed to probe the input. A higher value will enable detecting
           more accurate information, but will increase latency. It defaults to 5,000,000 microseconds = 5
           seconds.

       cryptokey hexadecimal string (input)
           Set decryption key.

       indexmem integer (input)
           Set max memory used for timestamp index (per stream).

       rtbufsize integer (input)
           Set max memory used for buffering real-time frames.

       fdebug flags (input/output)
           Print specific debug info.

           Possible values:

           ts
       max_delay integer (input/output)
           Set maximum muxing or demuxing delay in microseconds.

       fpsprobesize integer (input)
           Set number of frames used to probe fps.

       audio_preload integer (output)
           Set microseconds by which audio packets should be interleaved earlier.

       chunk_duration integer (output)
           Set microseconds for each chunk.

       chunk_size integer (output)
           Set size in bytes for each chunk.

       err_detect, f_err_detect flags (input)
           Set error detection flags. "f_err_detect" is deprecated and should be used only via the ffmpeg tool.

           Possible values:

           crccheck
               Verify embedded CRCs.

           bitstream
               Detect bitstream specification deviations.

           buffer
               Detect improper bitstream length.

           explode
               Abort decoding on minor error detection.

           careful
               Consider things that violate the spec and have not been seen in the wild as errors.

           compliant
               Consider all spec non compliancies as errors.

           aggressive
               Consider things that a sane encoder should not do as an error.

       max_interleave_delta integer (output)
           Set maximum buffering duration for interleaving. The duration is expressed in microseconds, and
           defaults to 1000000 (1 second).

           To ensure all the streams are interleaved correctly, libavformat will wait until it has at least one
           packet for each stream before actually writing any packets to the output file. When some streams are
           "sparse" (i.e. there are large gaps between successive packets), this can result in excessive
           buffering.

           This field specifies the maximum difference between the timestamps of the first and the last packet
           in the muxing queue, above which libavformat will output a packet regardless of whether it has queued
           a packet for all the streams.

           If set to 0, libavformat will continue buffering packets until it has a packet for each stream,
           regardless of the maximum timestamp difference between the buffered packets.

       use_wallclock_as_timestamps integer (input)
           Use wallclock as timestamps.

       avoid_negative_ts integer (output)
           Possible values:

           make_non_negative
               Shift timestamps to make them non-negative.  Also note that this affects only leading negative
               timestamps, and not non-monotonic negative timestamps.

           make_zero
               Shift timestamps so that the first timestamp is 0.

           auto (default)
               Enables shifting when required by the target format.

           disabled
               Disables shifting of timestamp.

           When shifting is enabled, all output timestamps are shifted by the same amount. Audio, video, and
           subtitles desynching and relative timestamp differences are preserved compared to how they would have
           been without shifting.

       skip_initial_bytes integer (input)
           Set number of bytes to skip before reading header and frames if set to 1.  Default is 0.

       correct_ts_overflow integer (input)
           Correct single timestamp overflows if set to 1. Default is 1.

       flush_packets integer (output)
           Flush the underlying I/O stream after each packet. Default 1 enables it, and has the effect of
           reducing the latency; 0 disables it and may slightly increase performance in some cases.

       output_ts_offset offset (output)
           Set the output time offset.

           offset must be a time duration specification, see the Time duration section in the ffmpeg-utils(1)
           manual.

           The offset is added by the muxer to the output timestamps.

           Specifying a positive offset means that the corresponding streams are delayed bt the time duration
           specified in offset. Default value is 0 (meaning that no offset is applied).

       format_whitelist list (input)
           "," separated List of allowed demuxers. By default all are allowed.

       dump_separator string (input)
           Separator used to separate the fields printed on the command line about the Stream parameters.  For
           example to separate the fields with newlines and indention:

                   ffprobe -dump_separator "
                                             "  -i ~/videos/matrixbench_mpeg2.mpg

       max_streams integer (input)
           Specifies the maximum number of streams. This can be used to reject files that would require too many
           resources due to a large number of streams.

   Format stream specifiers
       Format stream specifiers allow selection of one or more streams that match specific properties.

       Possible forms of stream specifiers are:

       stream_index
           Matches the stream with this index.

       stream_type[:stream_index]
           stream_type is one of following: 'v' for video, 'a' for audio, 's' for subtitle, 'd' for data, and
           't' for attachments. If stream_index is given, then it matches the stream number stream_index of this
           type. Otherwise, it matches all streams of this type.

       p:program_id[:stream_index]
           If stream_index is given, then it matches the stream with number stream_index in the program with the
           id program_id. Otherwise, it matches all streams in the program.

       #stream_id
           Matches the stream by a format-specific ID.

       The exact semantics of stream specifiers is defined by the "avformat_match_stream_specifier()" function
       declared in the libavformat/avformat.h header.

DEMUXERS

       Demuxers are configured elements in FFmpeg that can read the multimedia streams from a particular type of
       file.

       When you configure your FFmpeg build, all the supported demuxers are enabled by default. You can list all
       available ones using the configure option "--list-demuxers".

       You can disable all the demuxers using the configure option "--disable-demuxers", and selectively enable
       a single demuxer with the option "--enable-demuxer=DEMUXER", or disable it with the option
       "--disable-demuxer=DEMUXER".

       The option "-formats" of the ff* tools will display the list of enabled demuxers.

       The description of some of the currently available demuxers follows.

   aa
       Audible Format 2, 3, and 4 demuxer.

       This demuxer is used to demux Audible Format 2, 3, and 4 (.aa) files.

   applehttp
       Apple HTTP Live Streaming demuxer.

       This demuxer presents all AVStreams from all variant streams.  The id field is set to the bitrate variant
       index number. By setting the discard flags on AVStreams (by pressing 'a' or 'v' in ffplay), the caller
       can decide which variant streams to actually receive.  The total bitrate of the variant that the stream
       belongs to is available in a metadata key named "variant_bitrate".

   apng
       Animated Portable Network Graphics demuxer.

       This demuxer is used to demux APNG files.  All headers, but the PNG signature, up to (but not including)
       the first fcTL chunk are transmitted as extradata.  Frames are then split as being all the chunks between
       two fcTL ones, or between the last fcTL and IEND chunks.

       -ignore_loop bool
           Ignore the loop variable in the file if set.

       -max_fps int
           Maximum framerate in frames per second (0 for no limit).

       -default_fps int
           Default framerate in frames per second when none is specified in the file (0 meaning as fast as
           possible).

   asf
       Advanced Systems Format demuxer.

       This demuxer is used to demux ASF files and MMS network streams.

       -no_resync_search bool
           Do not try to resynchronize by looking for a certain optional start code.

   concat
       Virtual concatenation script demuxer.

       This demuxer reads a list of files and other directives from a text file and demuxes them one after the
       other, as if all their packet had been muxed together.

       The timestamps in the files are adjusted so that the first file starts at 0 and each next file starts
       where the previous one finishes. Note that it is done globally and may cause gaps if all streams do not
       have exactly the same length.

       All files must have the same streams (same codecs, same time base, etc.).

       The duration of each file is used to adjust the timestamps of the next file: if the duration is incorrect
       (because it was computed using the bit-rate or because the file is truncated, for example), it can cause
       artifacts. The "duration" directive can be used to override the duration stored in each file.

       Syntax

       The script is a text file in extended-ASCII, with one directive per line.  Empty lines, leading spaces
       and lines starting with '#' are ignored. The following directive is recognized:

       "file path"
           Path to a file to read; special characters and spaces must be escaped with backslash or single
           quotes.

           All subsequent file-related directives apply to that file.

       "ffconcat version 1.0"
           Identify the script type and version. It also sets the safe option to 1 if it was -1.

           To make FFmpeg recognize the format automatically, this directive must appears exactly as is (no
           extra space or byte-order-mark) on the very first line of the script.

       "duration dur"
           Duration of the file. This information can be specified from the file; specifying it here may be more
           efficient or help if the information from the file is not available or accurate.

           If the duration is set for all files, then it is possible to seek in the whole concatenated video.

       "inpoint timestamp"
           In point of the file. When the demuxer opens the file it instantly seeks to the specified timestamp.
           Seeking is done so that all streams can be presented successfully at In point.

           This directive works best with intra frame codecs, because for non-intra frame ones you will usually
           get extra packets before the actual In point and the decoded content will most likely contain frames
           before In point too.

           For each file, packets before the file In point will have timestamps less than the calculated start
           timestamp of the file (negative in case of the first file), and the duration of the files (if not
           specified by the "duration" directive) will be reduced based on their specified In point.

           Because of potential packets before the specified In point, packet timestamps may overlap between two
           concatenated files.

       "outpoint timestamp"
           Out point of the file. When the demuxer reaches the specified decoding timestamp in any of the
           streams, it handles it as an end of file condition and skips the current and all the remaining
           packets from all streams.

           Out point is exclusive, which means that the demuxer will not output packets with a decoding
           timestamp greater or equal to Out point.

           This directive works best with intra frame codecs and formats where all streams are tightly
           interleaved. For non-intra frame codecs you will usually get additional packets with presentation
           timestamp after Out point therefore the decoded content will most likely contain frames after Out
           point too. If your streams are not tightly interleaved you may not get all the packets from all
           streams before Out point and you may only will be able to decode the earliest stream until Out point.

           The duration of the files (if not specified by the "duration" directive) will be reduced based on
           their specified Out point.

       "file_packet_metadata key=value"
           Metadata of the packets of the file. The specified metadata will be set for each file packet. You can
           specify this directive multiple times to add multiple metadata entries.

       "stream"
           Introduce a stream in the virtual file.  All subsequent stream-related directives apply to the last
           introduced stream.  Some streams properties must be set in order to allow identifying the matching
           streams in the subfiles.  If no streams are defined in the script, the streams from the first file
           are copied.

       "exact_stream_id id"
           Set the id of the stream.  If this directive is given, the string with the corresponding id in the
           subfiles will be used.  This is especially useful for MPEG-PS (VOB) files, where the order of the
           streams is not reliable.

       Options

       This demuxer accepts the following option:

       safe
           If set to 1, reject unsafe file paths. A file path is considered safe if it does not contain a
           protocol specification and is relative and all components only contain characters from the portable
           character set (letters, digits, period, underscore and hyphen) and have no period at the beginning of
           a component.

           If set to 0, any file name is accepted.

           The default is 1.

           -1 is equivalent to 1 if the format was automatically probed and 0 otherwise.

       auto_convert
           If set to 1, try to perform automatic conversions on packet data to make the streams concatenable.
           The default is 1.

           Currently, the only conversion is adding the h264_mp4toannexb bitstream filter to H.264 streams in
           MP4 format. This is necessary in particular if there are resolution changes.

   flv
       Adobe Flash Video Format demuxer.

       This demuxer is used to demux FLV files and RTMP network streams.

       -flv_metadata bool
           Allocate the streams according to the onMetaData array content.

   libgme
       The Game Music Emu library is a collection of video game music file emulators.

       See <http://code.google.com/p/game-music-emu/> for more information.

       Some files have multiple tracks. The demuxer will pick the first track by default. The track_index option
       can be used to select a different track. Track indexes start at 0. The demuxer exports the number of
       tracks as tracks meta data entry.

       For very large files, the max_size option may have to be adjusted.

   libquvi
       Play media from Internet services using the quvi project.

       The demuxer accepts a format option to request a specific quality. It is by default set to best.

       See <http://quvi.sourceforge.net/> for more information.

       FFmpeg needs to be built with "--enable-libquvi" for this demuxer to be enabled.

   gif
       Animated GIF demuxer.

       It accepts the following options:

       min_delay
           Set the minimum valid delay between frames in hundredths of seconds.  Range is 0 to 6000. Default
           value is 2.

       max_gif_delay
           Set the maximum valid delay between frames in hundredth of seconds.  Range is 0 to 65535. Default
           value is 65535 (nearly eleven minutes), the maximum value allowed by the specification.

       default_delay
           Set the default delay between frames in hundredths of seconds.  Range is 0 to 6000. Default value is
           10.

       ignore_loop
           GIF files can contain information to loop a certain number of times (or infinitely). If ignore_loop
           is set to 1, then the loop setting from the input will be ignored and looping will not occur. If set
           to 0, then looping will occur and will cycle the number of times according to the GIF. Default value
           is 1.

       For example, with the overlay filter, place an infinitely looping GIF over another video:

               ffmpeg -i input.mp4 -ignore_loop 0 -i input.gif -filter_complex overlay=shortest=1 out.mkv

       Note that in the above example the shortest option for overlay filter is used to end the output video at
       the length of the shortest input file, which in this case is input.mp4 as the GIF in this example loops
       infinitely.

   hls
       HLS demuxer

       It accepts the following options:

       live_start_index
           segment index to start live streams at (negative values are from the end).

       allowed_extensions
           ',' separated list of file extensions that hls is allowed to access.

       max_reload
           Maximum number of times a insufficient list is attempted to be reloaded.  Default value is 1000.

   image2
       Image file demuxer.

       This demuxer reads from a list of image files specified by a pattern.  The syntax and meaning of the
       pattern is specified by the option pattern_type.

       The pattern may contain a suffix which is used to automatically determine the format of the images
       contained in the files.

       The size, the pixel format, and the format of each image must be the same for all the files in the
       sequence.

       This demuxer accepts the following options:

       framerate
           Set the frame rate for the video stream. It defaults to 25.

       loop
           If set to 1, loop over the input. Default value is 0.

       pattern_type
           Select the pattern type used to interpret the provided filename.

           pattern_type accepts one of the following values.

           none
               Disable pattern matching, therefore the video will only contain the specified image. You should
               use this option if you do not want to create sequences from multiple images and your filenames
               may contain special pattern characters.

           sequence
               Select a sequence pattern type, used to specify a sequence of files indexed by sequential
               numbers.

               A sequence pattern may contain the string "%d" or "%0Nd", which specifies the position of the
               characters representing a sequential number in each filename matched by the pattern. If the form
               "%d0Nd" is used, the string representing the number in each filename is 0-padded and N is the
               total number of 0-padded digits representing the number. The literal character '%' can be
               specified in the pattern with the string "%%".

               If the sequence pattern contains "%d" or "%0Nd", the first filename of the file list specified by
               the pattern must contain a number inclusively contained between start_number and
               start_number+start_number_range-1, and all the following numbers must be sequential.

               For example the pattern "img-%03d.bmp" will match a sequence of filenames of the form
               img-001.bmp, img-002.bmp, ..., img-010.bmp, etc.; the pattern "i%%m%%g-%d.jpg" will match a
               sequence of filenames of the form i%m%g-1.jpg, i%m%g-2.jpg, ..., i%m%g-10.jpg, etc.

               Note that the pattern must not necessarily contain "%d" or "%0Nd", for example to convert a
               single image file img.jpeg you can employ the command:

                       ffmpeg -i img.jpeg img.png

           glob
               Select a glob wildcard pattern type.

               The pattern is interpreted like a "glob()" pattern. This is only selectable if libavformat was
               compiled with globbing support.

           glob_sequence (deprecated, will be removed)
               Select a mixed glob wildcard/sequence pattern.

               If your version of libavformat was compiled with globbing support, and the provided pattern
               contains at least one glob meta character among "%*?[]{}" that is preceded by an unescaped "%",
               the pattern is interpreted like a "glob()" pattern, otherwise it is interpreted like a sequence
               pattern.

               All glob special characters "%*?[]{}" must be prefixed with "%". To escape a literal "%" you
               shall use "%%".

               For example the pattern "foo-%*.jpeg" will match all the filenames prefixed by "foo-" and
               terminating with ".jpeg", and "foo-%?%?%?.jpeg" will match all the filenames prefixed with
               "foo-", followed by a sequence of three characters, and terminating with ".jpeg".

               This pattern type is deprecated in favor of glob and sequence.

           Default value is glob_sequence.

       pixel_format
           Set the pixel format of the images to read. If not specified the pixel format is guessed from the
           first image file in the sequence.

       start_number
           Set the index of the file matched by the image file pattern to start to read from. Default value is
           0.

       start_number_range
           Set the index interval range to check when looking for the first image file in the sequence, starting
           from start_number. Default value is 5.

       ts_from_file
           If set to 1, will set frame timestamp to modification time of image file. Note that monotonity of
           timestamps is not provided: images go in the same order as without this option. Default value is 0.
           If set to 2, will set frame timestamp to the modification time of the image file in nanosecond
           precision.

       video_size
           Set the video size of the images to read. If not specified the video size is guessed from the first
           image file in the sequence.

       Examples

       •   Use ffmpeg for creating a video from the images in the file sequence img-001.jpeg, img-002.jpeg, ...,
           assuming an input frame rate of 10 frames per second:

                   ffmpeg -framerate 10 -i 'img-%03d.jpeg' out.mkv

       •   As above, but start by reading from a file with index 100 in the sequence:

                   ffmpeg -framerate 10 -start_number 100 -i 'img-%03d.jpeg' out.mkv

       •   Read images matching the "*.png" glob pattern , that is all the files terminating with the ".png"
           suffix:

                   ffmpeg -framerate 10 -pattern_type glob -i "*.png" out.mkv

   mov/mp4/3gp/Quicktme
       Quicktime / MP4 demuxer.

       This demuxer accepts the following options:

       enable_drefs
           Enable loading of external tracks, disabled by default.  Enabling this can theoretically leak
           information in some use cases.

       use_absolute_path
           Allows loading of external tracks via absolute paths, disabled by default.  Enabling this poses a
           security risk. It should only be enabled if the source is known to be non malicious.

   mpegts
       MPEG-2 transport stream demuxer.

       This demuxer accepts the following options:

       resync_size
           Set size limit for looking up a new synchronization. Default value is 65536.

       fix_teletext_pts
           Override teletext packet PTS and DTS values with the timestamps calculated from the PCR of the first
           program which the teletext stream is part of and is not discarded. Default value is 1, set this
           option to 0 if you want your teletext packet PTS and DTS values untouched.

       ts_packetsize
           Output option carrying the raw packet size in bytes.  Show the detected raw packet size, cannot be
           set by the user.

       scan_all_pmts
           Scan and combine all PMTs. The value is an integer with value from -1 to 1 (-1 means automatic
           setting, 1 means enabled, 0 means disabled). Default value is -1.

   rawvideo
       Raw video demuxer.

       This demuxer allows one to read raw video data. Since there is no header specifying the assumed video
       parameters, the user must specify them in order to be able to decode the data correctly.

       This demuxer accepts the following options:

       framerate
           Set input video frame rate. Default value is 25.

       pixel_format
           Set the input video pixel format. Default value is "yuv420p".

       video_size
           Set the input video size. This value must be specified explicitly.

       For example to read a rawvideo file input.raw with ffplay, assuming a pixel format of "rgb24", a video
       size of "320x240", and a frame rate of 10 images per second, use the command:

               ffplay -f rawvideo -pixel_format rgb24 -video_size 320x240 -framerate 10 input.raw

   sbg
       SBaGen script demuxer.

       This demuxer reads the script language used by SBaGen <http://uazu.net/sbagen/> to generate binaural
       beats sessions. A SBG script looks like that:

               -SE
               a: 300-2.5/3 440+4.5/0
               b: 300-2.5/0 440+4.5/3
               off: -
               NOW      == a
               +0:07:00 == b
               +0:14:00 == a
               +0:21:00 == b
               +0:30:00    off

       A SBG script can mix absolute and relative timestamps. If the script uses either only absolute timestamps
       (including the script start time) or only relative ones, then its layout is fixed, and the conversion is
       straightforward. On the other hand, if the script mixes both kind of timestamps, then the NOW reference
       for relative timestamps will be taken from the current time of day at the time the script is read, and
       the script layout will be frozen according to that reference. That means that if the script is directly
       played, the actual times will match the absolute timestamps up to the sound controller's clock accuracy,
       but if the user somehow pauses the playback or seeks, all times will be shifted accordingly.

   tedcaptions
       JSON captions used for <http://www.ted.com/>.

       TED does not provide links to the captions, but they can be guessed from the page. The file
       tools/bookmarklets.html from the FFmpeg source tree contains a bookmarklet to expose them.

       This demuxer accepts the following option:

       start_time
           Set the start time of the TED talk, in milliseconds. The default is 15000 (15s). It is used to sync
           the captions with the downloadable videos, because they include a 15s intro.

       Example: convert the captions to a format most players understand:

               ffmpeg -i http://www.ted.com/talks/subtitles/id/1/lang/en talk1-en.srt

MUXERS

       Muxers are configured elements in FFmpeg which allow writing multimedia streams to a particular type of
       file.

       When you configure your FFmpeg build, all the supported muxers are enabled by default. You can list all
       available muxers using the configure option "--list-muxers".

       You can disable all the muxers with the configure option "--disable-muxers" and selectively enable /
       disable single muxers with the options "--enable-muxer=MUXER" / "--disable-muxer=MUXER".

       The option "-formats" of the ff* tools will display the list of enabled muxers.

       A description of some of the currently available muxers follows.

   aiff
       Audio Interchange File Format muxer.

       Options

       It accepts the following options:

       write_id3v2
           Enable ID3v2 tags writing when set to 1. Default is 0 (disabled).

       id3v2_version
           Select ID3v2 version to write. Currently only version 3 and 4 (aka.  ID3v2.3 and ID3v2.4) are
           supported. The default is version 4.

   crc
       CRC (Cyclic Redundancy Check) testing format.

       This muxer computes and prints the Adler-32 CRC of all the input audio and video frames. By default audio
       frames are converted to signed 16-bit raw audio and video frames to raw video before computing the CRC.

       The output of the muxer consists of a single line of the form: CRC=0xCRC, where CRC is a hexadecimal
       number 0-padded to 8 digits containing the CRC for all the decoded input frames.

       See also the framecrc muxer.

       Examples

       For example to compute the CRC of the input, and store it in the file out.crc:

               ffmpeg -i INPUT -f crc out.crc

       You can print the CRC to stdout with the command:

               ffmpeg -i INPUT -f crc -

       You can select the output format of each frame with ffmpeg by specifying the audio and video codec and
       format. For example to compute the CRC of the input audio converted to PCM unsigned 8-bit and the input
       video converted to MPEG-2 video, use the command:

               ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc -

   framecrc
       Per-packet CRC (Cyclic Redundancy Check) testing format.

       This muxer computes and prints the Adler-32 CRC for each audio and video packet. By default audio frames
       are converted to signed 16-bit raw audio and video frames to raw video before computing the CRC.

       The output of the muxer consists of a line for each audio and video packet of the form:

               <stream_index>, <packet_dts>, <packet_pts>, <packet_duration>, <packet_size>, 0x<CRC>

       CRC is a hexadecimal number 0-padded to 8 digits containing the CRC of the packet.

       Examples

       For example to compute the CRC of the audio and video frames in INPUT, converted to raw audio and video
       packets, and store it in the file out.crc:

               ffmpeg -i INPUT -f framecrc out.crc

       To print the information to stdout, use the command:

               ffmpeg -i INPUT -f framecrc -

       With ffmpeg, you can select the output format to which the audio and video frames are encoded before
       computing the CRC for each packet by specifying the audio and video codec. For example, to compute the
       CRC of each decoded input audio frame converted to PCM unsigned 8-bit and of each decoded input video
       frame converted to MPEG-2 video, use the command:

               ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc -

       See also the crc muxer.

   framemd5
       Per-packet MD5 testing format.

       This muxer computes and prints the MD5 hash for each audio and video packet. By default audio frames are
       converted to signed 16-bit raw audio and video frames to raw video before computing the hash.

       The output of the muxer consists of a line for each audio and video packet of the form:

               <stream_index>, <packet_dts>, <packet_pts>, <packet_duration>, <packet_size>, <MD5>

       MD5 is a hexadecimal number representing the computed MD5 hash for the packet.

       Examples

       For example to compute the MD5 of the audio and video frames in INPUT, converted to raw audio and video
       packets, and store it in the file out.md5:

               ffmpeg -i INPUT -f framemd5 out.md5

       To print the information to stdout, use the command:

               ffmpeg -i INPUT -f framemd5 -

       See also the md5 muxer.

   gif
       Animated GIF muxer.

       It accepts the following options:

       loop
           Set the number of times to loop the output. Use "-1" for no loop, 0 for looping indefinitely
           (default).

       final_delay
           Force the delay (expressed in centiseconds) after the last frame. Each frame ends with a delay until
           the next frame. The default is "-1", which is a special value to tell the muxer to re-use the
           previous delay. In case of a loop, you might want to customize this value to mark a pause for
           instance.

       For example, to encode a gif looping 10 times, with a 5 seconds delay between the loops:

               ffmpeg -i INPUT -loop 10 -final_delay 500 out.gif

       Note 1: if you wish to extract the frames in separate GIF files, you need to force the image2 muxer:

               ffmpeg -i INPUT -c:v gif -f image2 "out%d.gif"

       Note 2: the GIF format has a very small time base: the delay between two frames can not be smaller than
       one centi second.

   hls
       Apple HTTP Live Streaming muxer that segments MPEG-TS according to the HTTP Live Streaming (HLS)
       specification.

       It creates a playlist file, and one or more segment files. The output filename specifies the playlist
       filename.

       By default, the muxer creates a file for each segment produced. These files have the same name as the
       playlist, followed by a sequential number and a .ts extension.

       For example, to convert an input file with ffmpeg:

               ffmpeg -i in.nut out.m3u8

       This example will produce the playlist, out.m3u8, and segment files: out0.ts, out1.ts, out2.ts, etc.

       See also the segment muxer, which provides a more generic and flexible implementation of a segmenter, and
       can be used to perform HLS segmentation.

       Options

       This muxer supports the following options:

       hls_time seconds
           Set the segment length in seconds. Default value is 2.

       hls_list_size size
           Set the maximum number of playlist entries. If set to 0 the list file will contain all the segments.
           Default value is 5.

       hls_ts_options options_list
           Set output format options using a :-separated list of key=value parameters. Values containing ":"
           special characters must be escaped.

       hls_wrap wrap
           Set the number after which the segment filename number (the number specified in each segment file)
           wraps. If set to 0 the number will be never wrapped. Default value is 0.

           This option is useful to avoid to fill the disk with many segment files, and limits the maximum
           number of segment files written to disk to wrap.

       start_number number
           Start the playlist sequence number from number. Default value is 0.

       hls_allow_cache allowcache
           Explicitly set whether the client MAY \fIs0(1) or MUST NOT \fIs0(0) cache media segments.

       hls_base_url baseurl
           Append baseurl to every entry in the playlist.  Useful to generate playlists with absolute paths.

           Note that the playlist sequence number must be unique for each segment and it is not to be confused
           with the segment filename sequence number which can be cyclic, for example if the wrap option is
           specified.

       hls_segment_filename filename
           Set the segment filename. Unless hls_flags single_file is set filename is used as a string format
           with the segment number:

                   ffmpeg in.nut -hls_segment_filename 'file%03d.ts' out.m3u8

           This example will produce the playlist, out.m3u8, and segment files: file000.ts, file001.ts,
           file002.ts, etc.

       hls_key_info_file key_info_file
           Use the information in key_info_file for segment encryption. The first line of key_info_file
           specifies the key URI written to the playlist. The key URL is used to access the encryption key
           during playback. The second line specifies the path to the key file used to obtain the key during the
           encryption process. The key file is read as a single packed array of 16 octets in binary format. The
           optional third line specifies the initialization vector (IV) as a hexadecimal string to be used
           instead of the segment sequence number (default) for encryption. Changes to key_info_file will result
           in segment encryption with the new key/IV and an entry in the playlist for the new key URI/IV.

           Key info file format:

                   <key URI>
                   <key file path>
                   <IV> (optional)

           Example key URIs:

                   http://server/file.key
                   /path/to/file.key
                   file.key

           Example key file paths:

                   file.key
                   /path/to/file.key

           Example IV:

                   0123456789ABCDEF0123456789ABCDEF

           Key info file example:

                   http://server/file.key
                   /path/to/file.key
                   0123456789ABCDEF0123456789ABCDEF

           Example shell script:

                   #!/bin/sh
                   BASE_URL=${1:-'.'}
                   openssl rand 16 > file.key
                   echo $BASE_URL/file.key > file.keyinfo
                   echo file.key >> file.keyinfo
                   echo $(openssl rand -hex 16) >> file.keyinfo
                   ffmpeg -f lavfi -re -i testsrc -c:v h264 -hls_flags delete_segments \
                     -hls_key_info_file file.keyinfo out.m3u8

       hls_flags single_file
           If this flag is set, the muxer will store all segments in a single MPEG-TS file, and will use byte
           ranges in the playlist. HLS playlists generated with this way will have the version number 4.  For
           example:

                   ffmpeg -i in.nut -hls_flags single_file out.m3u8

           Will produce the playlist, out.m3u8, and a single segment file, out.ts.

       hls_flags delete_segments
           Segment files removed from the playlist are deleted after a period of time equal to the duration of
           the segment plus the duration of the playlist.

   ico
       ICO file muxer.

       Microsoft's icon file format (ICO) has some strict limitations that should be noted:

       •   Size cannot exceed 256 pixels in any dimension

       •   Only BMP and PNG images can be stored

       •   If a BMP image is used, it must be one of the following pixel formats:

                   BMP Bit Depth      FFmpeg Pixel Format
                   1bit               pal8
                   4bit               pal8
                   8bit               pal8
                   16bit              rgb555le
                   24bit              bgr24
                   32bit              bgra

       •   If a BMP image is used, it must use the BITMAPINFOHEADER DIB header

       •   If a PNG image is used, it must use the rgba pixel format

   image2
       Image file muxer.

       The image file muxer writes video frames to image files.

       The output filenames are specified by a pattern, which can be used to produce sequentially numbered
       series of files.  The pattern may contain the string "%d" or "%0Nd", this string specifies the position
       of the characters representing a numbering in the filenames. If the form "%0Nd" is used, the string
       representing the number in each filename is 0-padded to N digits. The literal character '%' can be
       specified in the pattern with the string "%%".

       If the pattern contains "%d" or "%0Nd", the first filename of the file list specified will contain the
       number 1, all the following numbers will be sequential.

       The pattern may contain a suffix which is used to automatically determine the format of the image files
       to write.

       For example the pattern "img-%03d.bmp" will specify a sequence of filenames of the form img-001.bmp,
       img-002.bmp, ..., img-010.bmp, etc.  The pattern "img%%-%d.jpg" will specify a sequence of filenames of
       the form img%-1.jpg, img%-2.jpg, ..., img%-10.jpg, etc.

       Examples

       The following example shows how to use ffmpeg for creating a sequence of files img-001.jpeg,
       img-002.jpeg, ..., taking one image every second from the input video:

               ffmpeg -i in.avi -vsync 1 -r 1 -f image2 'img-%03d.jpeg'

       Note that with ffmpeg, if the format is not specified with the "-f" option and the output filename
       specifies an image file format, the image2 muxer is automatically selected, so the previous command can
       be written as:

               ffmpeg -i in.avi -vsync 1 -r 1 'img-%03d.jpeg'

       Note also that the pattern must not necessarily contain "%d" or "%0Nd", for example to create a single
       image file img.jpeg from the input video you can employ the command:

               ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg

       The strftime option allows you to expand the filename with date and time information. Check the
       documentation of the "strftime()" function for the syntax.

       For example to generate image files from the "strftime()" "%Y-%m-%d_%H-%M-%S" pattern, the following
       ffmpeg command can be used:

               ffmpeg -f v4l2 -r 1 -i /dev/video0 -f image2 -strftime 1 "%Y-%m-%d_%H-%M-%S.jpg"

       Options

       start_number
           Start the sequence from the specified number. Default value is 0.

       update
           If set to 1, the filename will always be interpreted as just a filename, not a pattern, and the
           corresponding file will be continuously overwritten with new images. Default value is 0.

       strftime
           If set to 1, expand the filename with date and time information from "strftime()". Default value is
           0.

       The image muxer supports the .Y.U.V image file format. This format is special in that that each image
       frame consists of three files, for each of the YUV420P components. To read or write this image file
       format, specify the name of the '.Y' file. The muxer will automatically open the '.U' and '.V' files as
       required.

   matroska
       Matroska container muxer.

       This muxer implements the matroska and webm container specs.

       Metadata

       The recognized metadata settings in this muxer are:

       title
           Set title name provided to a single track.

       language
           Specify the language of the track in the Matroska languages form.

           The language can be either the 3 letters bibliographic ISO-639-2 (ISO 639-2/B) form (like "fre" for
           French), or a language code mixed with a country code for specialities in languages (like "fre-ca"
           for Canadian French).

       stereo_mode
           Set stereo 3D video layout of two views in a single video track.

           The following values are recognized:

           mono
               video is not stereo

           left_right
               Both views are arranged side by side, Left-eye view is on the left

           bottom_top
               Both views are arranged in top-bottom orientation, Left-eye view is at bottom

           top_bottom
               Both views are arranged in top-bottom orientation, Left-eye view is on top

           checkerboard_rl
               Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first

           checkerboard_lr
               Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first

           row_interleaved_rl
               Each view is constituted by a row based interleaving, Right-eye view is first row

           row_interleaved_lr
               Each view is constituted by a row based interleaving, Left-eye view is first row

           col_interleaved_rl
               Both views are arranged in a column based interleaving manner, Right-eye view is first column

           col_interleaved_lr
               Both views are arranged in a column based interleaving manner, Left-eye view is first column

           anaglyph_cyan_red
               All frames are in anaglyph format viewable through red-cyan filters

           right_left
               Both views are arranged side by side, Right-eye view is on the left

           anaglyph_green_magenta
               All frames are in anaglyph format viewable through green-magenta filters

           block_lr
               Both eyes laced in one Block, Left-eye view is first

           block_rl
               Both eyes laced in one Block, Right-eye view is first

       For example a 3D WebM clip can be created using the following command line:

               ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm

       Options

       This muxer supports the following options:

       reserve_index_space
           By default, this muxer writes the index for seeking (called cues in Matroska terms) at the end of the
           file, because it cannot know in advance how much space to leave for the index at the beginning of the
           file. However for some use cases -- e.g.  streaming where seeking is possible but slow -- it is
           useful to put the index at the beginning of the file.

           If this option is set to a non-zero value, the muxer will reserve a given amount of space in the file
           header and then try to write the cues there when the muxing finishes. If the available space does not
           suffice, muxing will fail. A safe size for most use cases should be about 50kB per hour of video.

           Note that cues are only written if the output is seekable and this option will have no effect if it
           is not.

   md5
       MD5 testing format.

       This muxer computes and prints the MD5 hash of all the input audio and video frames. By default audio
       frames are converted to signed 16-bit raw audio and video frames to raw video before computing the hash.

       The output of the muxer consists of a single line of the form: MD5=MD5, where MD5 is a hexadecimal number
       representing the computed MD5 hash.

       For example to compute the MD5 hash of the input converted to raw audio and video, and store it in the
       file out.md5:

               ffmpeg -i INPUT -f md5 out.md5

       You can print the MD5 to stdout with the command:

               ffmpeg -i INPUT -f md5 -

       See also the framemd5 muxer.

   mov, mp4, ismv
       MOV/MP4/ISMV (Smooth Streaming) muxer.

       The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4 file has all the metadata about all
       packets stored in one location (written at the end of the file, it can be moved to the start for better
       playback by adding faststart to the movflags, or using the qt-faststart tool). A fragmented file consists
       of a number of fragments, where packets and metadata about these packets are stored together. Writing a
       fragmented file has the advantage that the file is decodable even if the writing is interrupted (while a
       normal MOV/MP4 is undecodable if it is not properly finished), and it requires less memory when writing
       very long files (since writing normal MOV/MP4 files stores info about every single packet in memory until
       the file is closed). The downside is that it is less compatible with other applications.

       Options

       Fragmentation is enabled by setting one of the AVOptions that define how to cut the file into fragments:

       -moov_size bytes
           Reserves space for the moov atom at the beginning of the file instead of placing the moov atom at the
           end. If the space reserved is insufficient, muxing will fail.

       -movflags frag_keyframe
           Start a new fragment at each video keyframe.

       -frag_duration duration
           Create fragments that are duration microseconds long.

       -frag_size size
           Create fragments that contain up to size bytes of payload data.

       -movflags frag_custom
           Allow the caller to manually choose when to cut fragments, by calling "av_write_frame(ctx, NULL)" to
           write a fragment with the packets written so far. (This is only useful with other applications
           integrating libavformat, not from ffmpeg.)

       -min_frag_duration duration
           Don't create fragments that are shorter than duration microseconds long.

       If more than one condition is specified, fragments are cut when one of the specified conditions is
       fulfilled. The exception to this is "-min_frag_duration", which has to be fulfilled for any of the other
       conditions to apply.

       Additionally, the way the output file is written can be adjusted through a few other options:

       -movflags empty_moov
           Write an initial moov atom directly at the start of the file, without describing any samples in it.
           Generally, an mdat/moov pair is written at the start of the file, as a normal MOV/MP4 file,
           containing only a short portion of the file. With this option set, there is no initial mdat atom, and
           the moov atom only describes the tracks but has a zero duration.

           This option is implicitly set when writing ismv (Smooth Streaming) files.

       -movflags separate_moof
           Write a separate moof (movie fragment) atom for each track. Normally, packets for all tracks are
           written in a moof atom (which is slightly more efficient), but with this option set, the muxer writes
           one moof/mdat pair for each track, making it easier to separate tracks.

           This option is implicitly set when writing ismv (Smooth Streaming) files.

       -movflags faststart
           Run a second pass moving the index (moov atom) to the beginning of the file.  This operation can take
           a while, and will not work in various situations such as fragmented output, thus it is not enabled by
           default.

       -movflags rtphint
           Add RTP hinting tracks to the output file.

       -movflags disable_chpl
           Disable Nero chapter markers (chpl atom).  Normally, both Nero chapters and a QuickTime chapter track
           are written to the file. With this option set, only the QuickTime chapter track will be written. Nero
           chapters can cause failures when the file is reprocessed with certain tagging programs, like mp3Tag
           2.61a and iTunes 11.3, most likely other versions are affected as well.

       -movflags omit_tfhd_offset
           Do not write any absolute base_data_offset in tfhd atoms. This avoids tying fragments to absolute
           byte positions in the file/streams.

       -movflags default_base_moof
           Similarly to the omit_tfhd_offset, this flag avoids writing the absolute base_data_offset field in
           tfhd atoms, but does so by using the new default-base-is-moof flag instead. This flag is new from
           14496-12:2012. This may make the fragments easier to parse in certain circumstances (avoiding basing
           track fragment location calculations on the implicit end of the previous track fragment).

       Example

       Smooth Streaming content can be pushed in real time to a publishing point on IIS with this muxer.
       Example:

               ffmpeg -re <<normal input/transcoding options>> -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1)

       Audible AAX

       Audible AAX files are encrypted M4B files, and they can be decrypted by specifying a 4 byte activation
       secret.

               ffmpeg -activation_bytes 1CEB00DA -i test.aax -vn -c:a copy output.mp4

   mp3
       The MP3 muxer writes a raw MP3 stream with the following optional features:

       •   An ID3v2 metadata header at the beginning (enabled by default). Versions 2.3 and 2.4 are supported,
           the "id3v2_version" private option controls which one is used (3 or 4). Setting "id3v2_version" to 0
           disables the ID3v2 header completely.

           The muxer supports writing attached pictures (APIC frames) to the ID3v2 header.  The pictures are
           supplied to the muxer in form of a video stream with a single packet. There can be any number of
           those streams, each will correspond to a single APIC frame.  The stream metadata tags title and
           comment map to APIC description and picture type respectively. See <http://id3.org/id3v2.4.0-frames>
           for allowed picture types.

           Note that the APIC frames must be written at the beginning, so the muxer will buffer the audio frames
           until it gets all the pictures. It is therefore advised to provide the pictures as soon as possible
           to avoid excessive buffering.

       •   A Xing/LAME frame right after the ID3v2 header (if present). It is enabled by default, but will be
           written only if the output is seekable. The "write_xing" private option can be used to disable it.
           The frame contains various information that may be useful to the decoder, like the audio duration or
           encoder delay.

       •   A legacy ID3v1 tag at the end of the file (disabled by default). It may be enabled with the
           "write_id3v1" private option, but as its capabilities are very limited, its usage is not recommended.

       Examples:

       Write an mp3 with an ID3v2.3 header and an ID3v1 footer:

               ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3

       To attach a picture to an mp3 file select both the audio and the picture stream with "map":

               ffmpeg -i input.mp3 -i cover.png -c copy -map 0 -map 1
               -metadata:s:v title="Album cover" -metadata:s:v comment="Cover (Front)" out.mp3

       Write a "clean" MP3 without any extra features:

               ffmpeg -i input.wav -write_xing 0 -id3v2_version 0 out.mp3

   mpegts
       MPEG transport stream muxer.

       This muxer implements ISO 13818-1 and part of ETSI EN 300 468.

       The recognized metadata settings in mpegts muxer are "service_provider" and "service_name". If they are
       not set the default for "service_provider" is "FFmpeg" and the default for "service_name" is "Service01".

       Options

       The muxer options are:

       -mpegts_original_network_id number
           Set the original_network_id (default 0x0001). This is unique identifier of a network in DVB. Its main
           use is in the unique identification of a service through the path Original_Network_ID,
           Transport_Stream_ID.

       -mpegts_transport_stream_id number
           Set the transport_stream_id (default 0x0001). This identifies a transponder in DVB.

       -mpegts_service_id number
           Set the service_id (default 0x0001) also known as program in DVB.

       -mpegts_service_type number
           Set the program service_type (default digital_tv), see below a list of pre defined values.

       -mpegts_pmt_start_pid number
           Set the first PID for PMT (default 0x1000, max 0x1f00).

       -mpegts_start_pid number
           Set the first PID for data packets (default 0x0100, max 0x0f00).

       -mpegts_m2ts_mode number
           Enable m2ts mode if set to 1. Default value is -1 which disables m2ts mode.

       -muxrate number
           Set a constant muxrate (default VBR).

       -pcr_period numer
           Override the default PCR retransmission time (default 20ms), ignored if variable muxrate is selected.

       pat_period number
           Maximal time in seconds between PAT/PMT tables.

       sdt_period number
           Maximal time in seconds between SDT tables.

       -pes_payload_size number
           Set minimum PES packet payload in bytes.

       -mpegts_flags flags
           Set flags (see below).

       -mpegts_copyts number
           Preserve original timestamps, if value is set to 1. Default value is -1, which results in shifting
           timestamps so that they start from 0.

       -tables_version number
           Set PAT, PMT and SDT version (default 0, valid values are from 0 to 31, inclusively).  This option
           allows updating stream structure so that standard consumer may detect the change. To do so, reopen
           output AVFormatContext (in case of API usage) or restart ffmpeg instance, cyclically changing
           tables_version value:

                   ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
                   ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
                   ...
                   ffmpeg -i source3.ts -codec copy -f mpegts -tables_version 31 udp://1.1.1.1:1111
                   ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
                   ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
                   ...

       Option mpegts_service_type accepts the following values:

       hex_value
           Any hexdecimal value between 0x01 to 0xff as defined in ETSI 300 468.

       digital_tv
           Digital TV service.

       digital_radio
           Digital Radio service.

       teletext
           Teletext service.

       advanced_codec_digital_radio
           Advanced Codec Digital Radio service.

       mpeg2_digital_hdtv
           MPEG2 Digital HDTV service.

       advanced_codec_digital_sdtv
           Advanced Codec Digital SDTV service.

       advanced_codec_digital_hdtv
           Advanced Codec Digital HDTV service.

       Option mpegts_flags may take a set of such flags:

       resend_headers
           Reemit PAT/PMT before writing the next packet.

       latm
           Use LATM packetization for AAC.

       pat_pmt_at_frames
           Reemit PAT and PMT at each video frame.

       Example

               ffmpeg -i file.mpg -c copy \
                    -mpegts_original_network_id 0x1122 \
                    -mpegts_transport_stream_id 0x3344 \
                    -mpegts_service_id 0x5566 \
                    -mpegts_pmt_start_pid 0x1500 \
                    -mpegts_start_pid 0x150 \
                    -metadata service_provider="Some provider" \
                    -metadata service_name="Some Channel" \
                    -y out.ts

   mxf, mxf_d10
       MXF muxer.

       Options

       The muxer options are:

       store_user_comments bool
           Set if user comments should be stored if available or never.  IRT D-10 does not allow user comments.
           The default is thus to write them for mxf but not for mxf_d10

   null
       Null muxer.

       This muxer does not generate any output file, it is mainly useful for testing or benchmarking purposes.

       For example to benchmark decoding with ffmpeg you can use the command:

               ffmpeg -benchmark -i INPUT -f null out.null

       Note that the above command does not read or write the out.null file, but specifying the output file is
       required by the ffmpeg syntax.

       Alternatively you can write the command as:

               ffmpeg -benchmark -i INPUT -f null -

   nut
       -syncpoints flags
           Change the syncpoint usage in nut:

           default use the normal low-overhead seeking aids.
           none do not use the syncpoints at all, reducing the overhead but making the stream non-seekable;
                   Use of this option is not recommended, as the resulting files are very damage
                   sensitive and seeking is not possible. Also in general the overhead from
                   syncpoints is negligible. Note, -C<write_index> 0 can be used to disable
                   all growing data tables, allowing to mux endless streams with limited memory
                   and without these disadvantages.

           timestamped extend the syncpoint with a wallclock field.

           The none and timestamped flags are experimental.

       -write_index bool
           Write index at the end, the default is to write an index.

               ffmpeg -i INPUT -f_strict experimental -syncpoints none - | processor

   ogg
       Ogg container muxer.

       -page_duration duration
           Preferred page duration, in microseconds. The muxer will attempt to create pages that are
           approximately duration microseconds long. This allows the user to compromise between seek granularity
           and container overhead. The default is 1 second. A value of 0 will fill all segments, making pages as
           large as possible. A value of 1 will effectively use 1 packet-per-page in most situations, giving a
           small seek granularity at the cost of additional container overhead.

       -serial_offset value
           Serial value from which to set the streams serial number.  Setting it to different and sufficiently
           large values ensures that the produced ogg files can be safely chained.

   segment, stream_segment, ssegment
       Basic stream segmenter.

       This muxer outputs streams to a number of separate files of nearly fixed duration. Output filename
       pattern can be set in a fashion similar to image2, or by using a "strftime" template if the strftime
       option is enabled.

       "stream_segment" is a variant of the muxer used to write to streaming output formats, i.e. which do not
       require global headers, and is recommended for outputting e.g. to MPEG transport stream segments.
       "ssegment" is a shorter alias for "stream_segment".

       Every segment starts with a keyframe of the selected reference stream, which is set through the
       reference_stream option.

       Note that if you want accurate splitting for a video file, you need to make the input key frames
       correspond to the exact splitting times expected by the segmenter, or the segment muxer will start the
       new segment with the key frame found next after the specified start time.

       The segment muxer works best with a single constant frame rate video.

       Optionally it can generate a list of the created segments, by setting the option segment_list. The list
       type is specified by the segment_list_type option. The entry filenames in the segment list are set by
       default to the basename of the corresponding segment files.

       See also the hls muxer, which provides a more specific implementation for HLS segmentation.

       Options

       The segment muxer supports the following options:

       reference_stream specifier
           Set the reference stream, as specified by the string specifier.  If specifier is set to "auto", the
           reference is chosen automatically. Otherwise it must be a stream specifier (see the ``Stream
           specifiers'' chapter in the ffmpeg manual) which specifies the reference stream. The default value is
           "auto".

       segment_format format
           Override the inner container format, by default it is guessed by the filename extension.

       segment_format_options options_list
           Set output format options using a :-separated list of key=value parameters. Values containing the ":"
           special character must be escaped.

       segment_list name
           Generate also a listfile named name. If not specified no listfile is generated.

       segment_list_flags flags
           Set flags affecting the segment list generation.

           It currently supports the following flags:

           cache
               Allow caching (only affects M3U8 list files).

           live
               Allow live-friendly file generation.

       segment_list_size size
           Update the list file so that it contains at most size segments. If 0 the list file will contain all
           the segments. Default value is 0.

       segment_list_entry_prefix prefix
           Prepend prefix to each entry. Useful to generate absolute paths.  By default no prefix is applied.

       segment_list_type type
           Select the listing format.

           The following values are recognized:

           flat
               Generate a flat list for the created segments, one segment per line.

           csv, ext
               Generate a list for the created segments, one segment per line, each line matching the format
               (comma-separated values):

                       <segment_filename>,<segment_start_time>,<segment_end_time>

               segment_filename is the name of the output file generated by the muxer according to the provided
               pattern. CSV escaping (according to RFC4180) is applied if required.

               segment_start_time and segment_end_time specify the segment start and end time expressed in
               seconds.

               A list file with the suffix ".csv" or ".ext" will auto-select this format.

               ext is deprecated in favor or csv.

           ffconcat
               Generate an ffconcat file for the created segments. The resulting file can be read using the
               FFmpeg concat demuxer.

               A list file with the suffix ".ffcat" or ".ffconcat" will auto-select this format.

           m3u8
               Generate an extended M3U8 file, version 3, compliant with
               <http://tools.ietf.org/id/draft-pantos-http-live-streaming>.

               A list file with the suffix ".m3u8" will auto-select this format.

           If not specified the type is guessed from the list file name suffix.

       segment_time time
           Set segment duration to time, the value must be a duration specification. Default value is "2". See
           also the segment_times option.

           Note that splitting may not be accurate, unless you force the reference stream key-frames at the
           given time. See the introductory notice and the examples below.

       segment_atclocktime 1|0
           If set to "1" split at regular clock time intervals starting from 00:00 o'clock. The time value
           specified in segment_time is used for setting the length of the splitting interval.

           For example with segment_time set to "900" this makes it possible to create files at 12:00 o'clock,
           12:15, 12:30, etc.

           Default value is "0".

       segment_time_delta delta
           Specify the accuracy time when selecting the start time for a segment, expressed as a duration
           specification. Default value is "0".

           When delta is specified a key-frame will start a new segment if its PTS satisfies the relation:

                   PTS >= start_time - time_delta

           This option is useful when splitting video content, which is always split at GOP boundaries, in case
           a key frame is found just before the specified split time.

           In particular may be used in combination with the ffmpeg option force_key_frames. The key frame times
           specified by force_key_frames may not be set accurately because of rounding issues, with the
           consequence that a key frame time may result set just before the specified time. For constant frame
           rate videos a value of 1/(2*frame_rate) should address the worst case mismatch between the specified
           time and the time set by force_key_frames.

       segment_times times
           Specify a list of split points. times contains a list of comma separated duration specifications, in
           increasing order. See also the segment_time option.

       segment_frames frames
           Specify a list of split video frame numbers. frames contains a list of comma separated integer
           numbers, in increasing order.

           This option specifies to start a new segment whenever a reference stream key frame is found and the
           sequential number (starting from 0) of the frame is greater or equal to the next value in the list.

       segment_wrap limit
           Wrap around segment index once it reaches limit.

       segment_start_number number
           Set the sequence number of the first segment. Defaults to 0.

       strftime 1|0
           Use the "strftime" function to define the name of the new segments to write. If this is selected, the
           output segment name must contain a "strftime" function template. Default value is 0.

       break_non_keyframes 1|0
           If enabled, allow segments to start on frames other than keyframes. This improves behavior on some
           players when the time between keyframes is inconsistent, but may make things worse on others, and can
           cause some oddities during seeking. Defaults to 0.

       reset_timestamps 1|0
           Reset timestamps at the begin of each segment, so that each segment will start with near-zero
           timestamps. It is meant to ease the playback of the generated segments. May not work with some
           combinations of muxers/codecs. It is set to 0 by default.

       initial_offset offset
           Specify timestamp offset to apply to the output packet timestamps. The argument must be a time
           duration specification, and defaults to 0.

       Examples

       •   Remux the content of file in.mkv to a list of segments out-000.nut, out-001.nut, etc., and write the
           list of generated segments to out.list:

                   ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.list out%03d.nut

       •   Segment input and set output format options for the output segments:

                   ffmpeg -i in.mkv -f segment -segment_time 10 -segment_format_options movflags=+faststart out%03d.mp4

       •   Segment the input file according to the split points specified by the segment_times option:

                   ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 out%03d.nut

       •   Use the ffmpeg force_key_frames option to force key frames in the input at the specified location,
           together with the segment option segment_time_delta to account for possible roundings operated when
           setting key frame times.

                   ffmpeg -i in.mkv -force_key_frames 1,2,3,5,8,13,21 -codec:v mpeg4 -codec:a pcm_s16le -map 0 \
                   -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut

           In order to force key frames on the input file, transcoding is required.

       •   Segment the input file by splitting the input file according to the frame numbers sequence specified
           with the segment_frames option:

                   ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_frames 100,200,300,500,800 out%03d.nut

       •   Convert the in.mkv to TS segments using the "libx264" and "libfaac" encoders:

                   ffmpeg -i in.mkv -map 0 -codec:v libx264 -codec:a libfaac -f ssegment -segment_list out.list out%03d.ts

       •   Segment the input file, and create an M3U8 live playlist (can be used as live HLS source):

                   ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \
                   -segment_list_flags +live -segment_time 10 out%03d.mkv

   smoothstreaming
       Smooth Streaming muxer generates a set of files (Manifest, chunks) suitable for serving with conventional
       web server.

       window_size
           Specify the number of fragments kept in the manifest. Default 0 (keep all).

       extra_window_size
           Specify the number of fragments kept outside of the manifest before removing from disk. Default 5.

       lookahead_count
           Specify the number of lookahead fragments. Default 2.

       min_frag_duration
           Specify the minimum fragment duration (in microseconds). Default 5000000.

       remove_at_exit
           Specify whether to remove all fragments when finished. Default 0 (do not remove).

   tee
       The tee muxer can be used to write the same data to several files or any other kind of muxer. It can be
       used, for example, to both stream a video to the network and save it to disk at the same time.

       It is different from specifying several outputs to the ffmpeg command-line tool because the audio and
       video data will be encoded only once with the tee muxer; encoding can be a very expensive process. It is
       not useful when using the libavformat API directly because it is then possible to feed the same packets
       to several muxers directly.

       The slave outputs are specified in the file name given to the muxer, separated by '|'. If any of the
       slave name contains the '|' separator, leading or trailing spaces or any special character, it must be
       escaped (see the "Quoting and escaping" section in the ffmpeg-utils(1) manual).

       Muxer options can be specified for each slave by prepending them as a list of key=value pairs separated
       by ':', between square brackets. If the options values contain a special character or the ':' separator,
       they must be escaped; note that this is a second level escaping.

       The following special options are also recognized:

       f   Specify the format name. Useful if it cannot be guessed from the output name suffix.

       bsfs[/spec]
           Specify a list of bitstream filters to apply to the specified output.

           It is possible to specify to which streams a given bitstream filter applies, by appending a stream
           specifier to the option separated by "/". spec must be a stream specifier (see Format stream
           specifiers).  If the stream specifier is not specified, the bitstream filters will be applied to all
           streams in the output.

           Several bitstream filters can be specified, separated by ",".

       select
           Select the streams that should be mapped to the slave output, specified by a stream specifier. If not
           specified, this defaults to all the input streams.

       Examples

       •   Encode something and both archive it in a WebM file and stream it as MPEG-TS over UDP (the streams
           need to be explicitly mapped):

                   ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a
                     "archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"

       •   Use ffmpeg to encode the input, and send the output to three different destinations. The "dump_extra"
           bitstream filter is used to add extradata information to all the output video keyframes packets, as
           requested by the MPEG-TS format. The select option is applied to out.aac in order to make it contain
           only audio packets.

                   ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -strict experimental
                          -f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=a]out.aac"

       •   As below, but select only stream "a:1" for the audio output. Note that a second level escaping must
           be performed, as ":" is a special character used to separate options.

                   ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -strict experimental
                          -f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=\'a:1\']out.aac"

       Note: some codecs may need different options depending on the output format; the auto-detection of this
       can not work with the tee muxer. The main example is the global_header flag.

   webm_dash_manifest
       WebM DASH Manifest muxer.

       This muxer implements the WebM DASH Manifest specification to generate the DASH manifest XML. It also
       supports manifest generation for DASH live streams.

       For more information see:

       •   WebM DASH Specification:
           <https://sites.google.com/a/webmproject.org/wiki/adaptive-streaming/webm-dash-specification>

       •   ISO DASH Specification:
           <http://standards.iso.org/ittf/PubliclyAvailableStandards/c065274_ISO_IEC_23009-1_2014.zip>

       Options

       This muxer supports the following options:

       adaptation_sets
           This option has the following syntax: "id=x,streams=a,b,c id=y,streams=d,e" where x and y are the
           unique identifiers of the adaptation sets and a,b,c,d and e are the indices of the corresponding
           audio and video streams. Any number of adaptation sets can be added using this option.

       live
           Set this to 1 to create a live stream DASH Manifest. Default: 0.

       chunk_start_index
           Start index of the first chunk. This will go in the startNumber attribute of the SegmentTemplate
           element in the manifest. Default: 0.

       chunk_duration_ms
           Duration of each chunk in milliseconds. This will go in the duration attribute of the SegmentTemplate
           element in the manifest. Default: 1000.

       utc_timing_url
           URL of the page that will return the UTC timestamp in ISO format. This will go in the value attribute
           of the UTCTiming element in the manifest.  Default: None.

       time_shift_buffer_depth
           Smallest time (in seconds) shifting buffer for which any Representation is guaranteed to be
           available. This will go in the timeShiftBufferDepth attribute of the MPD element. Default: 60.

       minimum_update_period
           Minimum update period (in seconds) of the manifest. This will go in the minimumUpdatePeriod attribute
           of the MPD element. Default: 0.

       Example

               ffmpeg -f webm_dash_manifest -i video1.webm \
                      -f webm_dash_manifest -i video2.webm \
                      -f webm_dash_manifest -i audio1.webm \
                      -f webm_dash_manifest -i audio2.webm \
                      -map 0 -map 1 -map 2 -map 3 \
                      -c copy \
                      -f webm_dash_manifest \
                      -adaptation_sets "id=0,streams=0,1 id=1,streams=2,3" \
                      manifest.xml

   webm_chunk
       WebM Live Chunk Muxer.

       This muxer writes out WebM headers and chunks as separate files which can be consumed by clients that
       support WebM Live streams via DASH.

       Options

       This muxer supports the following options:

       chunk_start_index
           Index of the first chunk (defaults to 0).

       header
           Filename of the header where the initialization data will be written.

       audio_chunk_duration
           Duration of each audio chunk in milliseconds (defaults to 5000).

       Example

               ffmpeg -f v4l2 -i /dev/video0 \
                      -f alsa -i hw:0 \
                      -map 0:0 \
                      -c:v libvpx-vp9 \
                      -s 640x360 -keyint_min 30 -g 30 \
                      -f webm_chunk \
                      -header webm_live_video_360.hdr \
                      -chunk_start_index 1 \
                      webm_live_video_360_%d.chk \
                      -map 1:0 \
                      -c:a libvorbis \
                      -b:a 128k \
                      -f webm_chunk \
                      -header webm_live_audio_128.hdr \
                      -chunk_start_index 1 \
                      -audio_chunk_duration 1000 \
                      webm_live_audio_128_%d.chk

METADATA

       FFmpeg is able to dump metadata from media files into a simple UTF-8-encoded INI-like text file and then
       load it back using the metadata muxer/demuxer.

       The file format is as follows:

       1.  A file consists of a header and a number of metadata tags divided into sections, each on its own
           line.

       2.  The header is a ;FFMETADATA string, followed by a version number (now 1).

       3.  Metadata tags are of the form key=value

       4.  Immediately after header follows global metadata

       5.  After global metadata there may be sections with per-stream/per-chapter metadata.

       6.  A section starts with the section name in uppercase (i.e. STREAM or CHAPTER) in brackets ([, ]) and
           ends with next section or end of file.

       7.  At the beginning of a chapter section there may be an optional timebase to be used for start/end
           values. It must be in form TIMEBASE=num/den, where num and den are integers. If the timebase is
           missing then start/end times are assumed to be in milliseconds.

           Next a chapter section must contain chapter start and end times in form START=num, END=num, where num
           is a positive integer.

       8.  Empty lines and lines starting with ; or # are ignored.

       9.  Metadata keys or values containing special characters (=, ;, #, \ and a newline) must be escaped with
           a backslash \.

       10. Note that whitespace in metadata (e.g. foo = bar) is considered to be a part of the tag (in the
           example above key is foo , value is
            bar).

       A ffmetadata file might look like this:

               ;FFMETADATA1
               title=bike\\shed
               ;this is a comment
               artist=FFmpeg troll team

               [CHAPTER]
               TIMEBASE=1/1000
               START=0
               #chapter ends at 0:01:00
               END=60000
               title=chapter \#1
               [STREAM]
               title=multi\
               line

       By using the ffmetadata muxer and demuxer it is possible to extract metadata from an input file to an
       ffmetadata file, and then transcode the file into an output file with the edited ffmetadata file.

       Extracting an ffmetadata file with ffmpeg goes as follows:

               ffmpeg -i INPUT -f ffmetadata FFMETADATAFILE

       Reinserting edited metadata information from the FFMETADATAFILE file can be done as:

               ffmpeg -i INPUT -i FFMETADATAFILE -map_metadata 1 -codec copy OUTPUT

SEE ALSO

       ffmpeg(1), ffplay(1), ffprobe(1), ffserver(1), libavformat(3)

AUTHORS

       The FFmpeg developers.

       For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg),
       e.g. by typing the command git log in the FFmpeg source directory, or browsing the online repository at
       <http://source.ffmpeg.org>.

       Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.

                                                                                               FFMPEG-FORMATS(1)