Provided by: gbutils_5.6.8-1build1_amd64 

NAME
gbnlprobit - Non linear probit regression
SYNOPSIS
gbnlprobit [options] <function definition>
DESCRIPTION
Non linear probit estimation. Minimize the negative log-likelihood
sum_{i in N_0} log(1-F(g(X_i))) + sum_{i in N_1} log(F(g(X_i)))
where N_0 and N_1 are the sets of 0 and 1 observations, g is a generic function of the independent
variables and F is the normal CDF. It is also possible to minimize the score function
w_0 sum_{i in N_0} theta(F(g(X_i))-t) +
w_1 sum_{i in N_1} theta(t-F(g(X_i)))
where theta is the Heaviside function and t a threshold level. Weights w_0 and w_1 scale the contribution
of the two subpopulations. The first column of data contains 0/1 entries. Successive columns are
independent variables. The model is specified by a function g(x1,x2...) where x1,.. stands for the
first,second .. N-th column independent variables.
options:
-O type of output (default 0)
0 parameters
1 parameters and errors
2 <variables> and probabilities
3 parameters and variance matrix
4 marginal effects
-V variance matrix estimation (default 0)
0 <gradF gradF^t>
1 < J^{-1} >
2 < H^{-1} >
3 < H^{-1} J H^{-1} >
-z take zscore (not of 0/1 dummies)
-F input fields separators (default " \t")
-v verbosity level (default 0)
0 just results
1 comment headers
2 summary statistics
3 covariance matrix
4 minimization steps (default 10)
5 model definition
-g set number of point for global optimal threshold identification
-h this help
-t set threshold value (default 0)
0 ignore threshold
(0,1) user provided threshold
1 compute optimal only global
2 compute optimal
-M estimation method
0 maximum likelihood
1 min. score (w0=w1=1)
2 min. score (w0=1/N0, w1=1/N1)
-A MLL optimization options (default 0.01,0.1,100,1e-6,1e-6,5) fields are
step,tol,iter,eps,msize,algo. Empty fields for default
step initial step size of the searching algorithm
tol line search tolerance iter: maximum number of iterations
eps gradient tolerance : stopping criteria ||gradient||<eps
algo optimization methods: 0 Fletcher-Reeves, 1 Polak-Ribiere, 2 Broyden-Fletcher-Goldfarb-Shanno, 3
Steepest descent, 4 simplex
-B score optimization options (default 0.1,100,1e-6) fields are step,iter,msize. Empty fields for
default
step initial step size of the searching algorithm
iter maximum number of iterations
msize max size, stopping criteria simplex dim. <max size optimization method is simplex
AUTHOR
Written by Giulio Bottazzi
REPORTING BUGS
Report bugs to <gbutils@googlegroups.com>
Package home page <http://cafim.sssup.it/~giulio/software/gbutils/index.html>
COPYRIGHT
Copyright © 2001-2015 Giulio Bottazzi This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License (version 2) as published by the Free Software
Foundation;
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
gbnlprobit 5.6.7 November 2015 GBNLPROBIT(1)