Provided by: gmt-common_5.2.1+dfsg-3build1_all bug

NAME

       gmtmath - Reverse Polish Notation (RPN) calculator for data tables

SYNOPSIS

       gmtmath  [  t_f(t).d[+e][+s|w]  ]  [  cols  ]  [  eigen  ]  [   ]  [  n_col[/t_col]  ]  [   ] [ [f|l] ] [
       t_min/t_max/t_inc[+]|tfile ] [ [level] ] [ -b<binary> ] [ -d<nodata> ] [  -f<flags>  ]  [  -g<gaps>  ]  [
       -h<headers> ] [ -i<flags> ] [ -o<flags> ] [ -s<flags> ] operand [ operand ] OPERATOR [ operand ] OPERATOR
       ...  = [ outfile ]

       Note: No space is allowed between the option flag and the associated arguments.

DESCRIPTION

       gmtmath  will perform operations like add, subtract, multiply, and divide on one or more table data files
       or constants using  Reverse  Polish  Notation  (RPN)  syntax  (e.g.,  Hewlett-Packard  calculator-style).
       Arbitrarily  complicated expressions may therefore be evaluated; the final result is written to an output
       file [or standard output]. Data operations are element-by-element, not matrix manipulations (except where
       noted). Some operators only require one operand (see below). If no data tables are used in the expression
       then options -T, -N can be set (and optionally -bo to indicate the data type for binary tables). If STDIN
       is given, the standard input will be read and placed on the stack as if a file with that content had been
       given on the command line. By default, all columns except the "time" column are operated on, but this can
       be changed (see -C).  Complicated or frequently occurring expressions may be coded as a macro for  future
       use or stored and recalled via named memory locations.

REQUIRED ARGUMENTS

       operand
              If  operand  can  be  opened as a file it will be read as an ASCII (or binary, see -bi) table data
              file. If not a file, it is interpreted as a numerical constant or a special  symbol  (see  below).
              The special argument STDIN means that stdin will be read and placed on the stack; STDIN can appear
              more than once if necessary.

       outfile
              The  name  of  a  table data file that will hold the final result. If not given then the output is
              sent to stdout.

OPTIONAL ARGUMENTS

       -At_f(t).d[+e][+s|w]
              Requires -N and will partially initialize a table with values from the given file containing t and
              f(t) only. The t is placed in column t_col while f(t) goes into column n_col -  1  (see  -N).   If
              used with operators LSQFIT and SVDFIT you can optionally append the modifier +e which will instead
              evaluate  the  solution  and write a data set with four columns: t, f(t), the model solution at t,
              and the the residuals at t, respectively [Default writes  one  column  with  model  coefficients].
              Append +w if t_f(t).d has a third column with weights, or append +s if t_f(t).d has a third column
              with  1-sigma.  In those two cases we find the weighted solution.  The weights (or sigmas) will be
              output as the last column when +e is in effect.

       -Ccols Select the columns that will be operated on until next occurrence of -C. List columns separated by
              commas; ranges like 1,3-5,7 are allowed. -C (no arguments) resets the default action of using  all
              columns  except  time  column  (see -N). -Ca selects all columns, including time column, while -Cr
              reverses (toggles) the current choices.  When -C is in effect it also controls which columns  from
              a file will be placed on the stack.

       -Eeigen
              Sets  the  minimum eigenvalue used by operators LSQFIT and SVDFIT [1e-7].  Smaller eigenvalues are
              set to zero and will not be considered in the solution.

       -I     Reverses the output row sequence from ascending time to descending [ascending].

       -Nn_col[/t_col]
              Select the number of columns and optionally the column number that contains  the  "time"  variable
              [0].  Columns  are numbered starting at 0 [2/0]. If input files are specified then -N will add any
              missing columns.

       -Q     Quick mode for scalar calculation. Shorthand for -Ca -N1/0  -T0/0/1.

       -S[f|l]
              Only report the first or last row of the results [Default is all rows]. This is useful if you have
              computed a statistic (say the MODE) and only want to report a single number  instead  of  numerous
              records  with  identical  values.  Append  l  to  get the last row and f to get the first row only
              [Default].

       -Tt_min/t_max/t_inc[+]|tfile
              Required when no input files are given. Sets the t-coordinates of the first and last point and the
              equidistant sampling interval for the "time" column (see -N). Append + if you are  specifying  the
              number of equidistant points instead. If there is no time column (only data columns), give -T with
              no  arguments;  this  also  implies -Ca. Alternatively, give the name of a file whose first column
              contains the desired t-coordinates which may be irregular.

       -V[level] (more ...)
              Select verbosity level [c].

       -bi[ncols][t] (more ...)
              Select native binary input.

       -bo[ncols][type] (more ...)
              Select native binary output. [Default is same as input, but see -o]

       -d[i|o]nodata (more ...)
              Replace input columns that equal nodata with NaN and do the reverse on output.

       -f[i|o]colinfo (more ...)
              Specify data types of input and/or output columns.

       -g[a]x|y|d|X|Y|D|[col]z[+|-]gap[u] (more ...)
              Determine data gaps and line breaks.

       -h[i|o][n][+c][+d][+rremark][+rtitle] (more ...)
              Skip or produce header record(s).

       -icols[l][sscale][ooffset][,...] (more ...)
              Select input columns (0 is first column).

       -ocols[,...] (more ...)
              Select output columns (0 is first column).

       -s[cols][a|r] (more ...)
              Set handling of NaN records.

       -^ or just -
              Print a short message about the syntax of the command, then exits (NOTE: on Windows use just -).

       -+ or just +
              Print an extensive usage (help) message, including the explanation of any  module-specific  option
              (but not the GMT common options), then exits.

       -? or no arguments
              Print a complete usage (help) message, including the explanation of options, then exits.

       --version
              Print GMT version and exit.

       --show-datadir
              Print full path to GMT share directory and exit.

OPERATORS

       Choose among the following 146 operators. "args" are the number of input and output arguments.
                                 ───────────────────────────────────────────────────
                                   Operator    args   Returns
                                 ───────────────────────────────────────────────────
                                   ABS         1 1    abs (A)
                                 ───────────────────────────────────────────────────
                                   ACOS        1 1    acos (A)
                                 ───────────────────────────────────────────────────
                                   ACOSH       1 1    acosh (A)
                                 ───────────────────────────────────────────────────
                                   ACSC        1 1    acsc (A)
                                 ───────────────────────────────────────────────────
                                   ACOT        1 1    acot (A)
                                 ───────────────────────────────────────────────────
                                   ADD         2 1    A + B
                                 ───────────────────────────────────────────────────
                                   AND         2 1    B if A == NaN, else A
                                 ───────────────────────────────────────────────────
                                   ASEC        1 1    asec (A)
                                 ───────────────────────────────────────────────────
                                   ASIN        1 1    asin (A)
                                 ───────────────────────────────────────────────────
                                   ASINH       1 1    asinh (A)
                                 ───────────────────────────────────────────────────
                                   ATAN        1 1    atan (A)
                                 ───────────────────────────────────────────────────
                                   ATAN2       2 1    atan2 (A, B)
                                 ───────────────────────────────────────────────────
                                   ATANH       1 1    atanh (A)
                                 ───────────────────────────────────────────────────
                                   BCDF        3 1    Binomial          cumulative
                                                      distribution function for  p
                                                      = A, n = B, and x = C
                                 ───────────────────────────────────────────────────
                                   BPDF        3 1    Binomial probability density
                                                      function  for  p = A, n = B,
                                                      and x = C
                                 ───────────────────────────────────────────────────
                                   BEI         1 1    bei (A)
                                 ───────────────────────────────────────────────────
                                   BER         1 1    ber (A)
                                 ───────────────────────────────────────────────────
                                   BITAND      2 1    A & B (bitwise AND operator)
                                 ───────────────────────────────────────────────────
                                   BITLEFT     2 1    A << B  (bitwise  left-shift
                                                      operator)
                                 ───────────────────────────────────────────────────
                                   BITNOT      1 1    ~A  (bitwise  NOT  operator,
                                                      i.e.,      return      two's
                                                      complement)
                                 ───────────────────────────────────────────────────
                                   BITOR       2 1    A | B (bitwise OR operator)
                                 ───────────────────────────────────────────────────
                                   BITRIGHT    2 1    A  >> B (bitwise right-shift
                                                      operator)
                                 ───────────────────────────────────────────────────
                                   BITTEST     2 1    1 if bit B of A is set, else
                                                      0 (bitwise TEST operator)
                                 ───────────────────────────────────────────────────
                                   BITXOR      2 1    A ^ B (bitwise XOR operator)
                                 ───────────────────────────────────────────────────
                                   CEIL        1 1    ceil (A)  (smallest  integer
                                                      >= A)
                                 ───────────────────────────────────────────────────
                                   CHICRIT     2 1    Chi-squared     distribution
                                                      critical value for alpha = A
                                                      and nu = B
                                 ───────────────────────────────────────────────────
                                   CHICDF      2 1    Chi-squared       cumulative
                                                      distribution   function  for
                                                      chi2 = A and nu = B
                                 ───────────────────────────────────────────────────
                                   CHIPDF      2 1    Chi-squared      probability
                                                      density  function for chi2 =
                                                      A and nu = B
                                 ───────────────────────────────────────────────────
                                   COL         1 1    Places column A on the stack
                                 ───────────────────────────────────────────────────
                                   COMB        2 1    Combinations n_C_r, with n =
                                                      A and r = B
                                 ───────────────────────────────────────────────────
                                   CORRCOEFF   2 1    Correlation coefficient r(A,
                                                      B)
                                 ───────────────────────────────────────────────────
                                   COS         1 1    cos (A) (A in radians)
                                 ───────────────────────────────────────────────────
                                   COSD        1 1    cos (A) (A in degrees)
                                 ───────────────────────────────────────────────────
                                   COSH        1 1    cosh (A)
                                 ───────────────────────────────────────────────────
                                   COT         1 1    cot (A) (A in radians)
                                 ───────────────────────────────────────────────────
                                   COTD        1 1    cot (A) (A in degrees)
                                 ───────────────────────────────────────────────────
                                   CSC         1 1    csc (A) (A in radians)
                                 ───────────────────────────────────────────────────
                                   CSCD        1 1    csc (A) (A in degrees)
                                 ───────────────────────────────────────────────────
                                   DDT         1 1    d(A)/dt     Central      1st
                                                      derivative
                                 ───────────────────────────────────────────────────
                                   D2DT2       1 1    d^2(A)/dt^2 2nd derivative
                                 ───────────────────────────────────────────────────
                                   D2R         1 1    Converts Degrees to Radians
                                 ───────────────────────────────────────────────────
                                   DENAN       2 1    Replace   NaNs   in  A  with
                                                      values from B
                                 ───────────────────────────────────────────────────
                                   DILOG       1 1    dilog (A)
                                 ───────────────────────────────────────────────────
                                   DIFF        1 1    Difference between  adjacent
                                                      elements  of  A  (A[1]-A[0],
                                                      A[2]-A[1], ..., 0)
                                 ───────────────────────────────────────────────────
                                   DIV         2 1    A / B
                                 ───────────────────────────────────────────────────
                                   DUP         1 2    Places duplicate of A on the
                                                      stack
                                 ───────────────────────────────────────────────────
                                   ECDF        2 1    Exponential       cumulative
                                                      distribution  function for x
                                                      = A and lambda = B
                                 ───────────────────────────────────────────────────
                                   ECRIT       2 1    Exponential     distribution
                                                      critical value for alpha = A
                                                      and lambda = B
                                 ───────────────────────────────────────────────────
                                   EPDF        2 1    Exponential      probability
                                                      density function for x  =  A
                                                      and lambda = B
                                 ───────────────────────────────────────────────────
                                   ERF         1 1    Error function erf (A)
                                 ───────────────────────────────────────────────────
                                   ERFC        1 1    Complementary Error function
                                                      erfc (A)
                                 ───────────────────────────────────────────────────
                                   ERFINV      1 1    Inverse error function of A
                                 ───────────────────────────────────────────────────
                                   EQ          2 1    1 if A == B, else 0
                                 ───────────────────────────────────────────────────
                                   EXCH        2 2    Exchanges  A  and  B  on the
                                                      stack
                                 ───────────────────────────────────────────────────
                                   EXP         1 1    exp (A)
                                 ───────────────────────────────────────────────────
                                   FACT        1 1    A! (A factorial)
                                 ───────────────────────────────────────────────────
                                   FCDF        3 1    F  cumulative   distribution
                                                      function for F = A, nu1 = B,
                                                      and nu2 = C
                                 ───────────────────────────────────────────────────
                                   FCRIT       3 1    F    distribution   critical
                                                      value for alpha = A,  nu1  =
                                                      B, and nu2 = C
                                 ───────────────────────────────────────────────────
                                   FLIPUD      1 1    Reverse order of each column
                                 ───────────────────────────────────────────────────
                                   FLOOR       1 1    floor  (A) (greatest integer
                                                      <= A)
                                 ───────────────────────────────────────────────────
                                   FMOD        2 1    A  %  B   (remainder   after
                                                      truncated division)
                                 ───────────────────────────────────────────────────
                                   FPDF        3 1    F     probability    density
                                                      function for F = A, nu1 = B,
                                                      and nu2 = C
                                 ───────────────────────────────────────────────────
                                   GE          2 1    1 if A >= B, else 0
                                 ───────────────────────────────────────────────────
                                   GT          2 1    1 if A > B, else 0
                                 ───────────────────────────────────────────────────
                                   HYPOT       2 1    hypot (A, B) = sqrt  (A*A  +
                                                      B*B)
                                 ───────────────────────────────────────────────────
                                   I0          1 1    Modified  Bessel function of
                                                      A (1st kind, order 0)
                                 ───────────────────────────────────────────────────
                                   I1          1 1    Modified Bessel function  of
                                                      A (1st kind, order 1)
                                 ───────────────────────────────────────────────────
                                   IFELSE      3 1    B if A != 0, else C
                                 ───────────────────────────────────────────────────
                                   IN          2 1    Modified  Bessel function of
                                                      A (1st kind, order B)
                                 ───────────────────────────────────────────────────
                                   INRANGE     3 1    1 if B <= A <= C, else 0
                                 ───────────────────────────────────────────────────
                                   INT         1 1    Numerically integrate A
                                 ───────────────────────────────────────────────────
                                   INV         1 1    1 / A
                                 ───────────────────────────────────────────────────
                                   ISFINITE    1 1    1 if A is finite, else 0
                                 ───────────────────────────────────────────────────
                                   ISNAN       1 1    1 if A == NaN, else 0
                                 ───────────────────────────────────────────────────
                                   J0          1 1    Bessel function  of  A  (1st
                                                      kind, order 0)
                                 ───────────────────────────────────────────────────
                                   J1          1 1    Bessel  function  of  A (1st
                                                      kind, order 1)
                                 ───────────────────────────────────────────────────
                                   JN          2 1    Bessel function  of  A  (1st
                                                      kind, order B)
                                 ───────────────────────────────────────────────────
                                   K0          1 1    Modified  Kelvin function of
                                                      A (2nd kind, order 0)
                                 ───────────────────────────────────────────────────
                                   K1          1 1    Modified Bessel function  of
                                                      A (2nd kind, order 1)
                                 ───────────────────────────────────────────────────
                                   KN          2 1    Modified  Bessel function of
                                                      A (2nd kind, order B)
                                 ───────────────────────────────────────────────────
                                   KEI         1 1    kei (A)
                                 ───────────────────────────────────────────────────
                                   KER         1 1    ker (A)
                                 ───────────────────────────────────────────────────
                                   KURT        1 1    Kurtosis of A
                                 ───────────────────────────────────────────────────
                                   LCDF        1 1    Laplace           cumulative
                                                      distribution  function for z
                                                      = A
                                 ───────────────────────────────────────────────────
                                   LCRIT       1 1    Laplace         distribution
                                                      critical value for alpha = A
                                 ───────────────────────────────────────────────────
                                   LE          2 1    1 if A <= B, else 0
                                 ───────────────────────────────────────────────────
                                   LMSSCL      1 1    LMS scale estimate (LMS STD)
                                                      of A
                                 ───────────────────────────────────────────────────
                                   LOG         1 1    log (A) (natural log)
                                 ───────────────────────────────────────────────────
                                   LOG10       1 1    log10 (A) (base 10)
                                 ───────────────────────────────────────────────────
                                   LOG1P       1 1    log   (1+A)   (accurate  for
                                                      small A)
                                 ───────────────────────────────────────────────────
                                   LOG2        1 1    log2 (A) (base 2)
                                 ───────────────────────────────────────────────────
                                   LOWER       1 1    The lowest  (minimum)  value
                                                      of A
                                 ───────────────────────────────────────────────────
                                   LPDF        1 1    Laplace  probability density
                                                      function for z = A
                                 ───────────────────────────────────────────────────
                                   LRAND       2 1    Laplace  random  noise  with
                                                      mean A and std. deviation B
                                 ───────────────────────────────────────────────────
                                   LSQFIT      1 0    Let current table be [A | b]
                                                      return     least     squares
                                                      solution x = A \ b
                                 ───────────────────────────────────────────────────
                                   LT          2 1    1 if A < B, else 0
                                 ───────────────────────────────────────────────────
                                   MAD         1 1    Median  Absolute   Deviation
                                                      (L1 STD) of A
                                 ───────────────────────────────────────────────────
                                   MAX         2 1    Maximum of A and B
                                 ───────────────────────────────────────────────────
                                   MEAN        1 1    Mean value of A
                                 ───────────────────────────────────────────────────
                                   MED         1 1    Median value of A
                                 ───────────────────────────────────────────────────
                                   MIN         2 1    Minimum of A and B
                                 ───────────────────────────────────────────────────
                                   MOD         2 1    A  mod  B  (remainder  after
                                                      floored division)
                                 ───────────────────────────────────────────────────
                                   MODE        1 1    Mode value (Least Median  of
                                                      Squares) of A
                                 ───────────────────────────────────────────────────
                                   MUL         2 1    A * B
                                 ───────────────────────────────────────────────────
                                   NAN         2 1    NaN if A == B, else A
                                 ───────────────────────────────────────────────────
                                   NEG         1 1    -A
                                 ───────────────────────────────────────────────────
                                   NEQ         2 1    1 if A != B, else 0
                                 ───────────────────────────────────────────────────
                                   NORM        1 1    Normalize       (A)       so
                                                      max(A)-min(A) = 1
                                 ───────────────────────────────────────────────────
                                   NOT         1 1    NaN if A == NaN, 1 if  A  ==
                                                      0, else 0
                                 ───────────────────────────────────────────────────
                                   NRAND       2 1    Normal,  random  values with
                                                      mean A and std. deviation B
                                 ───────────────────────────────────────────────────
                                   OR          2 1    NaN if B == NaN, else A
                                 ───────────────────────────────────────────────────
                                   PCDF        2 1    Poisson           cumulative
                                                      distribution  function for x
                                                      = A and lambda = B
                                 ───────────────────────────────────────────────────
                                   PERM        2 1    Permutations n_P_r, with n =
                                                      A and r = B
                                 ───────────────────────────────────────────────────
                                   PPDF        2 1    Poisson         distribution
                                                      P(x,lambda),  with x = A and
                                                      lambda = B
                                 ───────────────────────────────────────────────────
                                   PLM         3 1    Associated          Legendre
                                                      polynomial   P(A)  degree  B
                                                      order C
                                 ───────────────────────────────────────────────────
                                   PLMg        3 1    Normalized        associated
                                                      Legendre   polynomial   P(A)
                                                      degree     B     order     C
                                                      (geophysical convention)
                                 ───────────────────────────────────────────────────
                                   POP         1 0    Delete  top element from the
                                                      stack
                                 ───────────────────────────────────────────────────
                                   POW         2 1    A ^ B
                                 ───────────────────────────────────────────────────
                                   PQUANT      2 1    The B'th  Quantile  (0-100%)
                                                      of A
                                 ───────────────────────────────────────────────────
                                   PSI         1 1    Psi (or Digamma) of A
                                 ───────────────────────────────────────────────────
                                   PV          3 1    Legendre  function  Pv(A) of
                                                      degree v = real(B) + imag(C)
                                 ───────────────────────────────────────────────────
                                   QV          3 1    Legendre function  Qv(A)  of
                                                      degree v = real(B) + imag(C)
                                 ───────────────────────────────────────────────────
                                   R2          2 1    R2 = A^2 + B^2
                                 ───────────────────────────────────────────────────
                                   R2D         1 1    Convert Radians to Degrees
                                 ───────────────────────────────────────────────────
                                   RAND        2 1    Uniform     random    values
                                                      between A and B
                                 ───────────────────────────────────────────────────
                                   RCDF        1 1    Rayleigh          cumulative
                                                      distribution  function for z
                                                      = A
                                 ───────────────────────────────────────────────────
                                   RCRIT       1 1    Rayleigh        distribution
                                                      critical value for alpha = A
                                 ───────────────────────────────────────────────────
                                   RINT        1 1    rint  (A) (round to integral
                                                      value nearest to A)
                                 ───────────────────────────────────────────────────
                                   RPDF        1 1    Rayleigh probability density
                                                      function for z = A
                                 ───────────────────────────────────────────────────
                                   ROLL        2 0    Cyclicly shifts  the  top  A
                                                      stack items by an amount B
                                 ───────────────────────────────────────────────────
                                   ROTT        2 1    Rotate  A  by the (constant)
                                                      shift B in the t-direction
                                 ───────────────────────────────────────────────────
                                   SEC         1 1    sec (A) (A in radians)
                                 ───────────────────────────────────────────────────
                                   SECD        1 1    sec (A) (A in degrees)
                                 ───────────────────────────────────────────────────
                                   SIGN        1 1    sign (+1 or -1) of A
                                 ───────────────────────────────────────────────────
                                   SIN         1 1    sin (A) (A in radians)
                                 ───────────────────────────────────────────────────
                                   SINC        1 1    sinc (A) (sin (pi*A)/(pi*A))
                                 ───────────────────────────────────────────────────
                                   SIND        1 1    sin (A) (A in degrees)
                                 ───────────────────────────────────────────────────
                                   SINH        1 1    sinh (A)
                                 ───────────────────────────────────────────────────
                                   SKEW        1 1    Skewness of A
                                 ───────────────────────────────────────────────────
                                   SQR         1 1    A^2
                                 ───────────────────────────────────────────────────
                                   SQRT        1 1    sqrt (A)
                                 ───────────────────────────────────────────────────
                                   STD         1 1    Standard deviation of A
                                 ───────────────────────────────────────────────────
                                   STEP        1 1    Heaviside step function H(A)
                                 ───────────────────────────────────────────────────
                                   STEPT       1 1    Heaviside   step    function
                                                      H(t-A)
                                 ───────────────────────────────────────────────────
                                   SUB         2 1    A - B
                                 ───────────────────────────────────────────────────
                                   SUM         1 1    Cumulative sum of A
                                 ───────────────────────────────────────────────────
                                   TAN         1 1    tan (A) (A in radians)
                                 ───────────────────────────────────────────────────
                                   TAND        1 1    tan (A) (A in degrees)
                                 ───────────────────────────────────────────────────
                                   TANH        1 1    tanh (A)
                                 ───────────────────────────────────────────────────
                                   TAPER       1 1    Unit  weights cosine-tapered
                                                      to  zero  within  A  of  end
                                                      margins
                                 ───────────────────────────────────────────────────
                                   TN          2 1    Chebyshev         polynomial
                                                      Tn(-1<A<+1) of degree B
                                 ───────────────────────────────────────────────────
                                   TCRIT       2 1    Student's   t   distribution
                                                      critical value for alpha = A
                                                      and nu = B
                                 ───────────────────────────────────────────────────
                                   TPDF        2 1    Student's    t   probability
                                                      density function for t =  A,
                                                      and nu = B
                                 ───────────────────────────────────────────────────
                                   TCDF        2 1    Student's    t    cumulative
                                                      distribution function for  t
                                                      = A, and nu = B
                                 ───────────────────────────────────────────────────
                                   UPPER       1 1    The  highest (maximum) value
                                                      of A
                                 ───────────────────────────────────────────────────
                                   WCDF        3 1    Weibull           cumulative
                                                      distribution  function for x
                                                      = A, scale = B, and shape  =
                                                      C
                                 ───────────────────────────────────────────────────
                                   WCRIT       3 1    Weibull         distribution
                                                      critical value for  alpha  =
                                                      A, scale = B, and shape = C
                                 ───────────────────────────────────────────────────
                                   WPDF        3 1    Weibull density distribution
                                                      P(x,scale,shape),  with  x =
                                                      A, scale = B, and shape = C
                                 ───────────────────────────────────────────────────
                                   XOR         2 1    B if A == NaN, else A
                                 ───────────────────────────────────────────────────
                                   Y0          1 1    Bessel function  of  A  (2nd
                                                      kind, order 0)
                                 ───────────────────────────────────────────────────
                                   Y1          1 1    Bessel  function  of  A (2nd
                                                      kind, order 1)
                                 ───────────────────────────────────────────────────
                                   YN          2 1    Bessel function  of  A  (2nd
                                                      kind, order B)
                                 ───────────────────────────────────────────────────
                                   ZCDF        1 1    Normal            cumulative
                                                      distribution function for  z
                                                      = A
                                 ───────────────────────────────────────────────────
                                   ZPDF        1 1    Normal  probability  density
                                                      function for z = A
                                 ───────────────────────────────────────────────────
                                   ZCRIT       1 1    Normal distribution critical
                                                      value for alpha = A
                                 ───────────────────────────────────────────────────
                                   ROOTS       2 1    Treats col A as f(t) = 0 and
                                                      returns its roots
                                 ┌───────────┬──────┬──────────────────────────────┐
                                 │           │      │                              │
SYMBOLS                          │           │      │                              │
--
ASCII FORMAT PRECISION           │           │      │                              │
--

NOTES ON OPERATORS

       1. The operators PLM and PLMg calculate the associated Legendre polynomial of degree L and order M  in  x
       which  must  satisfy  -1  <=  x  <= +1 and 0 <= M <= L. x, L, and M are the three arguments preceding the
       operator. PLM is not normalized and includes the Condon-Shortley phase (-1)^M. PLMg is normalized in  the
       way  that  is  most commonly used in geophysics. The C-S phase can be added by using -M as argument.  PLM
       will overflow at higher degrees, whereas PLMg is stable until ultra high degrees (at least 3000).

       2. Files that have the same names as some operators, e.g., ADD, SIGN, =, etc.  should  be  identified  by
       prepending the current directory (i.e., ./).

       3. The stack depth limit is hard-wired to 100.

       4.  All  functions  expecting  a  positive radius (e.g., LOG, KEI, etc.) are passed the absolute value of
       their argument.

       5. The DDT and D2DT2 functions only work on regularly spaced data.

       6. All derivatives are based on central finite differences, with natural boundary conditions.

       7. ROOTS must be the last operator on the stack, only followed by =.

STORE, RECALL AND CLEAR

       You may store intermediate calculations to a named variable that you may recall and place on the stack at
       a later time. This is useful if you need access to a computed quantity many times in your  expression  as
       it  will  shorten  the  overall  expression and improve readability. To save a result you use the special
       operator STO@label, where label is the name you choose to give the quantity. To recall the stored  result
       to  the  stack  at  a  later  time,  use  [RCL]@label, i.e., RCL is optional. To clear memory you may use
       CLR@label. Note that STO and CLR leave the stack unchanged.

       8. The bitwise operators (BITAND, BITLEFT, BITNOT,  BITOR,  BITRIGHT,  BITTEST,  and  BITXOR)  convert  a
       tables's double precision values to unsigned 64-bit ints to perform the bitwise operations. Consequently,
       the  largest  whole  integer  value  that  can  be  stored  in  a  double  precision  value  is  2^53  or
       9,007,199,254,740,992. Any higher result will be  masked  to  fit  in  the  lower  54  bits.   Thus,  bit
       operations  are  effectively limited to 54 bits.  All bitwise operators return NaN if given NaN arguments
       or bit-settings <= 0.

       9. TAPER will interpret its argument to be a width in the same units as the time-axis, but if no time  is
       provided (i.e., plain data tables) then the width is taken to be given in number of rows.

MACROS

       Users  may  save  their  favorite  operator  combinations  as macros via the file gmtmath.macros in their
       current or user directory. The file may contain any number of macros  (one  per  record);  comment  lines
       starting  with  #  are skipped. The format for the macros is name = arg1 arg2 ... arg2 [ : comment] where
       name is how the macro will be used. When this operator appears on the command line we simply  replace  it
       with  the  listed  argument  list.  No  macro  may call another macro. As an example, the following macro
       expects that the time-column contains  seafloor  ages  in  Myr  and  computes  the  predicted  half-space
       bathymetry:

       DEPTH = SQRT 350 MUL 2500 ADD NEG : usage: DEPTH to return half-space seafloor depths

       Note:  Because  geographic  or time constants may be present in a macro, it is required that the optional
       comment flag (:) must be followed by a space.   As  another  example,  we  show  a  macro  GPSWEEK  which
       determines which GPS week a timestamp belongs to:

       GPSWEEK = 1980-01-06T00:00:00 SUB 86400 DIV 7 DIV FLOOR : GPS week without rollover

EXAMPLES

       To  take the square root of the content of the second data column being piped through gmtmath by process1
       and pipe it through a 3rd process, use

              process1 | gmt math STDIN SQRT = | process3

       To take log10 of the average of 2 data files, use

              gmt math file1.d file2.d ADD 0.5 MUL LOG10 = file3.d

       Given the file samples.d, which holds seafloor ages in m.y. and seafloor depth in  m,  use  the  relation
       depth(in m) = 2500 + 350 * sqrt (age) to print the depth anomalies:

              gmt math samples.d T SQRT 350 MUL 2500 ADD SUB = | lpr

       To take the average of columns 1 and 4-6 in the three data sets sizes.1, sizes.2, and sizes.3, use

              gmt math -C1,4-6 sizes.1 sizes.2 ADD sizes.3 ADD 3 DIV = ave.d

       To take the 1-column data set ages.d and calculate the modal value and assign it to a variable, try

              gmt set mode_age = `gmt math -S -T ages.d MODE =`

       To evaluate the dilog(x) function for coordinates given in the file t.d:

              gmt math -Tt.d T DILOG = dilog.d

       To  demonstrate  the  use of stored variables, consider this sum of the first 3 cosine harmonics where we
       store and repeatedly recall the trigonometric argument (2*pi*T/360):

              gmt math -T0/360/1 2 PI MUL 360 DIV T MUL STO@kT COS @kT 2 MUL COS ADD \
                          @kT 3 MUL COS ADD = harmonics.d

       To use gmtmath as a RPN Hewlett-Packard calculator on  scalars  (i.e.,  no  input  files)  and  calculate
       arbitrary  expressions,  use  the  -Q  option.   As an example, we will calculate the value of Kei (((1 +
       1.75)/2.2) + cos (60)) and store the result in the shell variable z:

              set z = `gmt math -Q 1 1.75 ADD 2.2 DIV 60 COSD ADD KEI =`

       To use gmtmath as a general least squares  equation  solver,  imagine  that  the  current  table  is  the
       augmented  matrix  [  A | b ] and you want the least squares solution x to the matrix equation A * x = b.
       The operator LSQFIT does this; it is your job to populate the matrix correctly first. The -A option  will
       facilitate  this.  Suppose  you have a 2-column file ty.d with t and b(t) and you would like to fit a the
       model y(t) = a + b*t + c*H(t-t0), where H is the Heaviside step function for a given t0 = 1.55. Then, you
       need a 4-column augmented table loaded with t in column 1  and  your  observed  y(t)  in  column  3.  The
       calculation becomes

              gmt math -N4/1 -Aty.d -C0 1 ADD -C2 1.55 STEPT ADD -Ca LSQFIT = solution.d

       Note  we use the -C option to select which columns we are working on, then make active all the columns we
       need (here all of them, with -Ca) before calling LSQFIT. The second and fourth columns (col numbers 1 and
       3) are preloaded with t and y(t), respectively, the other  columns  are  zero.  If  you  already  have  a
       pre-calculated  table  with  the  augmented  matrix [ A | b ] in a file (say lsqsys.d), the least squares
       solution is simply

              gmt math -T lsqsys.d LSQFIT = solution.d

       Users must be aware that when -C controls which columns are to be active the control extends  to  placing
       columns from files as well.  Contrast the different result obtained by these very similar commands:

          echo 1 2 3 4 | gmt math STDIN -C3 1 ADD =
          1    2    3    5

       versus

          echo 1 2 3 4 | gmt math -C3 STDIN 1 ADD =
          0    0    0    5

REFERENCES

       Abramowitz,  M.,  and I. A. Stegun, 1964, Handbook of Mathematical Functions, Applied Mathematics Series,
       vol. 55, Dover, New York.

       Holmes, S. A., and W. E. Featherstone, 2002, A  unified  approach  to  the  Clenshaw  summation  and  the
       recursive  computation of very high degree and order normalized associated Legendre functions. Journal of
       Geodesy, 76, 279-299.

       Press, W. H., S. A. Teukolsky, W. T. Vetterling,  and  B.  P.  Flannery,  1992,  Numerical  Recipes,  2nd
       edition, Cambridge Univ., New York.

       Spanier, J., and K. B. Oldman, 1987, An Atlas of Functions, Hemisphere Publishing Corp.

SEE ALSO

       gmt, grdmath

COPYRIGHT

       2015, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe

5.2.1                                           January 28, 2016                                   GMTMATH(1gmt)