xenial (1) pathlib.1.gz

Provided by: python-pathlib_1.0.1-2_all bug

NAME

       pathlib - pathlib Documentation

       Manipulating  filesystem  paths  as  string  objects  can  quickly  become  cumbersome: multiple calls to
       os.path.join() or os.path.dirname(), etc.  This module offers a set of classes featuring all  the  common
       operations on paths in an easy, object-oriented way.

       This module is best used with Python 3.2 or later, but it is also compatible with Python 2.7.

       NOTE:
          This  module  has  been included in the Python 3.4 standard library after PEP 428 acceptance. You only
          need to install it for Python 3.3 or older.

       SEE ALSO:
          PEP 428: Rationale for the final pathlib design and API.

DOWNLOAD

       Standalone releases are available on PyPI: http://pypi.python.org/pypi/pathlib/

       Main development now takes place in the Python standard library: see the Python developer's guide.

       The maintenance repository for this standalone backport module can be found on BitBucket, but activity is
       expected to be quite low: https://bitbucket.org/pitrou/pathlib/

HIGH-LEVEL VIEW

       This  module  offers  classes  representing  filesystem  paths  with  semantics appropriate for different
       operating systems.  Path classes are divided between  pure  paths,  which  provide  purely  computational
       operations  without  I/O,  and  concrete  paths,  which  inherit  from  pure  paths  but also provide I/O
       operations.  [image]

       If you've never used this module before or just aren't sure which class is right for your task,  Path  is
       most likely what you need. It instantiates a concrete path for the platform the code is running on.

       Pure paths are useful in some special cases; for example:

       1. If  you  want to manipulate Windows paths on a Unix machine (or vice versa).  You cannot instantiate a
          WindowsPath when running on Unix, but you can instantiate PureWindowsPath.

       2. You want to make sure that your code only manipulates paths without actually accessing the OS. In this
          case,  instantiating  one  of  the  pure  classes  may  be  useful  since  those simply don't have any
          OS-accessing operations.

BASIC USE

       Importing the module classes:

          >>> from pathlib import *

       Listing subdirectories:

          >>> p = Path('.')
          >>> [x for x in p.iterdir() if x.is_dir()]
          [PosixPath('.hg'), PosixPath('docs'), PosixPath('dist'),
           PosixPath('__pycache__'), PosixPath('build')]

       Listing Python source files in this directory tree:

          >>> list(p.glob('**/*.py'))
          [PosixPath('test_pathlib.py'), PosixPath('setup.py'),
           PosixPath('pathlib.py'), PosixPath('docs/conf.py'),
           PosixPath('build/lib/pathlib.py')]

       Navigating inside a directory tree:

          >>> p = Path('/etc')
          >>> q = p / 'init.d' / 'reboot'
          >>> q
          PosixPath('/etc/init.d/reboot')
          >>> q.resolve()
          PosixPath('/etc/rc.d/init.d/halt')

       Querying path properties:

          >>> q.exists()
          True
          >>> q.is_dir()
          False

       Opening a file:

          >>> with q.open() as f: f.readline()
          ...
          '#!/bin/bash\n'

PURE PATHS

       Pure path objects provide path-handling operations which don't actually access a filesystem.   There  are
       three ways to access these classes, which we also call flavours:

       class pathlib.PurePath(*pathsegments)
              A  generic  class  that  represents  the  system's path flavour (instantiating it creates either a
              PurePosixPath or a PureWindowsPath):

                 >>> PurePath('setup.py')      # Running on a Unix machine
                 PurePosixPath('setup.py')

              Each element of pathsegments can be either a string or bytes object representing a  path  segment;
              it can also be another path object:

                 >>> PurePath('foo', 'some/path', 'bar')
                 PurePosixPath('foo/some/path/bar')
                 >>> PurePath(Path('foo'), Path('bar'))
                 PurePosixPath('foo/bar')

              When pathsegments is empty, the current directory is assumed:

                 >>> PurePath()
                 PurePosixPath('.')

              When  several absolute paths are given, the last is taken as an anchor (mimicking os.path.join()'s
              behaviour):

                 >>> PurePath('/etc', '/usr', 'lib64')
                 PurePosixPath('/usr/lib64')
                 >>> PureWindowsPath('c:/Windows', 'd:bar')
                 PureWindowsPath('d:bar')

              However, in a Windows path, changing the local root doesn't discard the previous drive setting:

                 >>> PureWindowsPath('c:/Windows', '/Program Files')
                 PureWindowsPath('c:/Program Files')

              Spurious slashes and single dots are collapsed, but double dots ('..') are not, since  this  would
              change the meaning of a path in the face of symbolic links:

                 >>> PurePath('foo//bar')
                 PurePosixPath('foo/bar')
                 >>> PurePath('foo/./bar')
                 PurePosixPath('foo/bar')
                 >>> PurePath('foo/../bar')
                 PurePosixPath('foo/../bar')

              (a naïve approach would make PurePosixPath('foo/../bar') equivalent to PurePosixPath('bar'), which
              is wrong if foo is a symbolic link to another directory)

       class pathlib.PurePosixPath(*pathsegments)
              A subclass of PurePath, this path flavour represents non-Windows filesystem paths:

                 >>> PurePosixPath('/etc')
                 PurePosixPath('/etc')

              pathsegments is specified similarly to PurePath.

       class pathlib.PureWindowsPath(*pathsegments)
              A subclass of PurePath, this path flavour represents Windows filesystem paths:

                 >>> PureWindowsPath('c:/Program Files/')
                 PureWindowsPath('c:/Program Files')

              pathsegments is specified similarly to PurePath.

       Regardless of the system you're running on, you can instantiate all of these classes,  since  they  don't
       provide any operation that does system calls.

   General properties
       Paths  are  immutable  and  hashable.   Paths  of  a  same  flavour  are comparable and orderable.  These
       properties respect the flavour's case-folding semantics:

          >>> PurePosixPath('foo') == PurePosixPath('FOO')
          False
          >>> PureWindowsPath('foo') == PureWindowsPath('FOO')
          True
          >>> PureWindowsPath('FOO') in { PureWindowsPath('foo') }
          True
          >>> PureWindowsPath('C:') < PureWindowsPath('d:')
          True

       Paths of a different flavour compare unequal and cannot be ordered:

          >>> PureWindowsPath('foo') == PurePosixPath('foo')
          False
          >>> PureWindowsPath('foo') < PurePosixPath('foo')
          Traceback (most recent call last):
            File "<stdin>", line 1, in <module>
          TypeError: unorderable types: PureWindowsPath() < PurePosixPath()

   Operators
       The slash operator helps create child paths, similarly to os.path.join:

          >>> p = PurePath('/etc')
          >>> p
          PurePosixPath('/etc')
          >>> p / 'init.d' / 'apache2'
          PurePosixPath('/etc/init.d/apache2')
          >>> q = PurePath('bin')
          >>> '/usr' / q
          PurePosixPath('/usr/bin')

       The string representation of a path is the  raw  filesystem  path  itself  (in  native  form,  e.g.  with
       backslashes under Windows), which you can pass to any function taking a file path as a string:

          >>> p = PurePath('/etc')
          >>> str(p)
          '/etc'
          >>> p = PureWindowsPath('c:/Program Files')
          >>> str(p)
          'c:\\Program Files'

       Similarly,  calling  bytes  on  a  path  gives  the  raw filesystem path as a bytes object, as encoded by
       os.fsencode:

          >>> bytes(p)
          b'/etc'

   Accessing individual parts
       To access the individual "parts" (components) of a path, use the following property:

       PurePath.parts
              A tuple giving access to the path's various components:

                 >>> p = PurePath('/usr/bin/python3')
                 >>> p.parts
                 ('/', 'usr', 'bin', 'python3')

                 >>> p = PureWindowsPath('c:/Program Files/PSF')
                 >>> p.parts
                 ('c:\\', 'Program Files', 'PSF')

              (note how the drive and local root are regrouped in a single part)

   Methods and properties
       Pure paths provide the following methods and properties:

       PurePath.drive
              A string representing the drive letter or name, if any:

                 >>> PureWindowsPath('c:/Program Files/').drive
                 'c:'
                 >>> PureWindowsPath('/Program Files/').drive
                 ''
                 >>> PurePosixPath('/etc').drive
                 ''

              UNC shares are also considered drives:

                 >>> PureWindowsPath('//host/share/foo.txt').drive
                 '\\\\host\\share'

       PurePath.root
              A string representing the (local or global) root, if any:

                 >>> PureWindowsPath('c:/Program Files/').root
                 '\\'
                 >>> PureWindowsPath('c:Program Files/').root
                 ''
                 >>> PurePosixPath('/etc').root
                 '/'

              UNC shares always have a root:

                 >>> PureWindowsPath('//host/share').root
                 '\\'

       PurePath.anchor
              The concatenation of the drive and root:

                 >>> PureWindowsPath('c:/Program Files/').anchor
                 'c:\\'
                 >>> PureWindowsPath('c:Program Files/').anchor
                 'c:'
                 >>> PurePosixPath('/etc').anchor
                 '/'
                 >>> PureWindowsPath('//host/share').anchor
                 '\\\\host\\share\\'

       PurePath.parents
              An immutable sequence providing access to the logical ancestors of the path:

                 >>> p = PureWindowsPath('c:/foo/bar/setup.py')
                 >>> p.parents[0]
                 PureWindowsPath('c:/foo/bar')
                 >>> p.parents[1]
                 PureWindowsPath('c:/foo')
                 >>> p.parents[2]
                 PureWindowsPath('c:/')

       PurePath.parent
              The logical parent of the path:

                 >>> p = PurePosixPath('/a/b/c/d')
                 >>> p.parent
                 PurePosixPath('/a/b/c')

              You cannot go past an anchor, or empty path:

                 >>> p = PurePosixPath('/')
                 >>> p.parent
                 PurePosixPath('/')
                 >>> p = PurePosixPath('.')
                 >>> p.parent
                 PurePosixPath('.')

              NOTE:
                 This is a purely lexical operation, hence the following behaviour:

                     >>> p = PurePosixPath('foo/..')
                     >>> p.parent
                     PurePosixPath('foo')

                 If you want to walk an arbitrary filesystem path upwards,  it  is  recommended  to  first  call
                 Path.resolve() so as to resolve symlinks and eliminate ".." components.

       PurePath.name
              A string representing the final path component, excluding the drive and root, if any:

                 >>> PurePosixPath('my/library/setup.py').name
                 'setup.py'

              UNC drive names are not considered:

                 >>> PureWindowsPath('//some/share/setup.py').name
                 'setup.py'
                 >>> PureWindowsPath('//some/share').name
                 ''

       PurePath.suffix
              The file extension of the final component, if any:

                 >>> PurePosixPath('my/library/setup.py').suffix
                 '.py'
                 >>> PurePosixPath('my/library.tar.gz').suffix
                 '.gz'
                 >>> PurePosixPath('my/library').suffix
                 ''

       PurePath.suffixes
              A list of the path's file extensions:

                 >>> PurePosixPath('my/library.tar.gar').suffixes
                 ['.tar', '.gar']
                 >>> PurePosixPath('my/library.tar.gz').suffixes
                 ['.tar', '.gz']
                 >>> PurePosixPath('my/library').suffixes
                 []

       PurePath.stem
              The final path component, without its suffix:

                 >>> PurePosixPath('my/library.tar.gz').stem
                 'library.tar'
                 >>> PurePosixPath('my/library.tar').stem
                 'library'
                 >>> PurePosixPath('my/library').stem
                 'library'

       PurePath.as_posix()
              Return a string representation of the path with forward slashes (/):

                 >>> p = PureWindowsPath('c:\\windows')
                 >>> str(p)
                 'c:\\windows'
                 >>> p.as_posix()
                 'c:/windows'

       PurePath.as_uri()
              Represent the path as a file URI.  ValueError is raised if the path isn't absolute.

              >>> p = PurePosixPath('/etc/passwd')
              >>> p.as_uri()
              'file:///etc/passwd'
              >>> p = PureWindowsPath('c:/Windows')
              >>> p.as_uri()
              'file:///c:/Windows'

       PurePath.is_absolute()
              Return  whether  the path is absolute or not.  A path is considered absolute if it has both a root
              and (if the flavour allows) a drive:

                 >>> PurePosixPath('/a/b').is_absolute()
                 True
                 >>> PurePosixPath('a/b').is_absolute()
                 False

                 >>> PureWindowsPath('c:/a/b').is_absolute()
                 True
                 >>> PureWindowsPath('/a/b').is_absolute()
                 False
                 >>> PureWindowsPath('c:').is_absolute()
                 False
                 >>> PureWindowsPath('//some/share').is_absolute()
                 True

       PurePath.is_reserved()
              With PureWindowsPath, return True  if  the  path  is  considered  reserved  under  Windows,  False
              otherwise.  With PurePosixPath, False is always returned.

              >>> PureWindowsPath('nul').is_reserved()
              True
              >>> PurePosixPath('nul').is_reserved()
              False

              File system calls on reserved paths can fail mysteriously or have unintended effects.

       PurePath.joinpath(*other)
              Calling this method is equivalent to combining the path with each of the other arguments in turn:

                 >>> PurePosixPath('/etc').joinpath('passwd')
                 PurePosixPath('/etc/passwd')
                 >>> PurePosixPath('/etc').joinpath(PurePosixPath('passwd'))
                 PurePosixPath('/etc/passwd')
                 >>> PurePosixPath('/etc').joinpath('init.d', 'apache2')
                 PurePosixPath('/etc/init.d/apache2')
                 >>> PureWindowsPath('c:').joinpath('/Program Files')
                 PureWindowsPath('c:/Program Files')

       PurePath.match(pattern)
              Match  this  path against the provided glob-style pattern.  Return True if matching is successful,
              False otherwise.

              If pattern is relative, the path can be either relative or absolute, and matching is done from the
              right:

                 >>> PurePath('a/b.py').match('*.py')
                 True
                 >>> PurePath('/a/b/c.py').match('b/*.py')
                 True
                 >>> PurePath('/a/b/c.py').match('a/*.py')
                 False

              If pattern is absolute, the path must be absolute, and the whole path must match:

                 >>> PurePath('/a.py').match('/*.py')
                 True
                 >>> PurePath('a/b.py').match('/*.py')
                 False

              As with other methods, case-sensitivity is observed:

                 >>> PureWindowsPath('b.py').match('*.PY')
                 True

       PurePath.relative_to(*other)
              Compute  a  version  of  this path relative to the path represented by other.  If it's impossible,
              ValueError is raised:

                 >>> p = PurePosixPath('/etc/passwd')
                 >>> p.relative_to('/')
                 PurePosixPath('etc/passwd')
                 >>> p.relative_to('/etc')
                 PurePosixPath('passwd')
                 >>> p.relative_to('/usr')
                 Traceback (most recent call last):
                   File "<stdin>", line 1, in <module>
                   File "pathlib.py", line 694, in relative_to
                     .format(str(self), str(formatted)))
                 ValueError: '/etc/passwd' does not start with '/usr'

       PurePath.with_name(name)
              Return a new path with the name changed.  If the original path doesn't have a name, ValueError  is
              raised:

                 >>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')
                 >>> p.with_name('setup.py')
                 PureWindowsPath('c:/Downloads/setup.py')
                 >>> p = PureWindowsPath('c:/')
                 >>> p.with_name('setup.py')
                 Traceback (most recent call last):
                   File "<stdin>", line 1, in <module>
                   File "/home/antoine/cpython/default/Lib/pathlib.py", line 751, in with_name
                     raise ValueError("%r has an empty name" % (self,))
                 ValueError: PureWindowsPath('c:/') has an empty name

       PurePath.with_suffix(suffix)
              Return  a  new  path with the suffix changed.  If the original path doesn't have a suffix, the new
              suffix is appended instead:

                 >>> p = PureWindowsPath('c:/Downloads/pathlib.tar.gz')
                 >>> p.with_suffix('.bz2')
                 PureWindowsPath('c:/Downloads/pathlib.tar.bz2')
                 >>> p = PureWindowsPath('README')
                 >>> p.with_suffix('.txt')
                 PureWindowsPath('README.txt')

CONCRETE PATHS

       Concrete paths are subclasses of the pure path classes.   In  addition  to  operations  provided  by  the
       latter,  they  also  provide  methods  to  do  system  calls  on  path  objects.  There are three ways to
       instantiate concrete paths:

       class pathlib.Path(*pathsegments)
              A subclass of PurePath, this  class  represents  concrete  paths  of  the  system's  path  flavour
              (instantiating it creates either a PosixPath or a WindowsPath):

                 >>> Path('setup.py')
                 PosixPath('setup.py')

              pathsegments is specified similarly to PurePath.

       class pathlib.PosixPath(*pathsegments)
              A subclass of Path and PurePosixPath, this class represents concrete non-Windows filesystem paths:

                 >>> PosixPath('/etc')
                 PosixPath('/etc')

              pathsegments is specified similarly to PurePath.

       class pathlib.WindowsPath(*pathsegments)
              A subclass of Path and PureWindowsPath, this class represents concrete Windows filesystem paths:

                 >>> WindowsPath('c:/Program Files/')
                 WindowsPath('c:/Program Files')

              pathsegments is specified similarly to PurePath.

       You  can  only  instantiate  the  class flavour that corresponds to your system (allowing system calls on
       non-compatible path flavours could lead to bugs or failures in your application):

          >>> import os
          >>> os.name
          'posix'
          >>> Path('setup.py')
          PosixPath('setup.py')
          >>> PosixPath('setup.py')
          PosixPath('setup.py')
          >>> WindowsPath('setup.py')
          Traceback (most recent call last):
            File "<stdin>", line 1, in <module>
            File "pathlib.py", line 798, in __new__
              % (cls.__name__,))
          NotImplementedError: cannot instantiate 'WindowsPath' on your system

   Methods
       Concrete paths provide the following methods in addition to pure paths methods.  Many  of  these  methods
       can raise an OSError if a system call fails (for example because the path doesn't exist):

       classmethod Path.cwd()
              Return a new path object representing the current directory (as returned by os.getcwd()):

                 >>> Path.cwd()
                 PosixPath('/home/antoine/pathlib')

       Path.stat()
              Return information about this path (similarly to os.stat()).  The result is looked up at each call
              to this method.

              >>> p = Path('setup.py')
              >>> p.stat().st_size
              956
              >>> p.stat().st_mtime
              1327883547.852554

       Path.chmod(mode)
              Change the file mode and permissions, like os.chmod():

                 >>> p = Path('setup.py')
                 >>> p.stat().st_mode
                 33277
                 >>> p.chmod(0o444)
                 >>> p.stat().st_mode
                 33060

       Path.exists()
              Whether the path points to an existing file or directory:

                 >>> from pathlib import *
                 >>> Path('.').exists()
                 True
                 >>> Path('setup.py').exists()
                 True
                 >>> Path('/etc').exists()
                 True
                 >>> Path('nonexistentfile').exists()
                 False

       Path.glob(pattern)
              Glob the given pattern in the directory represented by this path, yielding all matching files  (of
              any kind):

                 >>> sorted(Path('.').glob('*.py'))
                 [PosixPath('pathlib.py'), PosixPath('setup.py'), PosixPath('test_pathlib.py')]
                 >>> sorted(Path('.').glob('*/*.py'))
                 [PosixPath('docs/conf.py')]

              The  "**"  pattern means "this directory and all subdirectories, recursively".  In other words, it
              enables recursive globbing:

                 >>> sorted(Path('.').glob('**/*.py'))
                 [PosixPath('build/lib/pathlib.py'),
                  PosixPath('docs/conf.py'),
                  PosixPath('pathlib.py'),
                  PosixPath('setup.py'),
                  PosixPath('test_pathlib.py')]

              NOTE:
                 Using the "**" pattern in large directory trees may consume an inordinate amount of time.

       Path.group()
              Return the name of the group owning the file.  KeyError is raised if the file's gid isn't found in
              the system database.

       Path.is_dir()
              Return  True if the path points to a directory (or a symbolic link pointing to a directory), False
              if it points to another kind of file.

              False is also returned if the path doesn't exist or is a broken symlink;  other  errors  (such  as
              permission errors) are propagated.

       Path.is_file()
              Return  True if the path points to a regular file (or a symbolic link pointing to a regular file),
              False if it points to another kind of file.

              False is also returned if the path doesn't exist or is a broken symlink;  other  errors  (such  as
              permission errors) are propagated.

       Path.is_symlink()
              Return True if the path points to a symbolic link, False otherwise.

              False  is  also  returned  if the path doesn't exist; other errors (such as permission errors) are
              propagated.

       Path.is_socket()
              Return True if the path points to a Unix socket (or a symbolic link pointing to  a  Unix  socket),
              False if it points to another kind of file.

              False  is  also  returned  if the path doesn't exist or is a broken symlink; other errors (such as
              permission errors) are propagated.

       Path.is_fifo()
              Return True if the path points to a FIFO (or a symbolic link pointing to  a  FIFO),  False  if  it
              points to another kind of file.

              False  is  also  returned  if the path doesn't exist or is a broken symlink; other errors (such as
              permission errors) are propagated.

       Path.is_block_device()
              Return True if the path points to a block device (or a symbolic link pointing to a block  device),
              False if it points to another kind of file.

              False  is  also  returned  if the path doesn't exist or is a broken symlink; other errors (such as
              permission errors) are propagated.

       Path.is_char_device()
              Return True if the path points to a character device (or a symbolic link pointing to  a  character
              device), False if it points to another kind of file.

              False  is  also  returned  if the path doesn't exist or is a broken symlink; other errors (such as
              permission errors) are propagated.

       Path.iterdir()
              When the path points to a directory, yield path objects of the directory contents:

                 >>> p = Path('docs')
                 >>> for child in p.iterdir(): child
                 ...
                 PosixPath('docs/conf.py')
                 PosixPath('docs/_templates')
                 PosixPath('docs/make.bat')
                 PosixPath('docs/index.rst')
                 PosixPath('docs/_build')
                 PosixPath('docs/_static')
                 PosixPath('docs/Makefile')

       Path.lchmod(mode)
              Like Path.chmod() but, if the path points to a symbolic link, the symbolic link's mode is  changed
              rather than its target's.

       Path.lstat()
              Like  Path.stat()  but,  if  the  path  points  to  a  symbolic  link,  return the symbolic link's
              information rather than its target's.

       Path.mkdir(mode=0o777, parents=False)
              Create a new directory at this given path.  If mode is given, it is  combined  with  the  process'
              umask  value  to determine the file mode and access flags.  If the path already exists, OSError is
              raised.

              If parents is true, any missing parents of this path are created as needed; they are created  with
              the default permissions without taking mode into account (mimicking the POSIX mkdir -p command).

              If parents is false (the default), a missing parent raises OSError.

       Path.open(mode='r', buffering=-1, encoding=None, errors=None, newline=None)
              Open the file pointed to by the path, like the built-in open() function does:

                 >>> p = Path('setup.py')
                 >>> with p.open() as f:
                 ...     f.readline()
                 ...
                 '#!/usr/bin/env python3\n'

       Path.owner()
              Return  the name of the user owning the file.  KeyError is raised if the file's uid isn't found in
              the system database.

       Path.rename(target)
              Rename this file or directory to the given target.  target can be either a string or another  path
              object:

                 >>> p = Path('foo')
                 >>> p.open('w').write('some text')
                 9
                 >>> target = Path('bar')
                 >>> p.rename(target)
                 >>> target.open().read()
                 'some text'

       Path.replace(target)
              Rename  this  file  or  directory  to  the  given target.  If target points to an existing file or
              directory, it will be unconditionally replaced.

              This method is only available with Python 3.3;  it  will  raise  NotImplementedError  on  previous
              Python versions.

       Path.resolve()
              Make the path absolute, resolving any symlinks.  A new path object is returned:

                 >>> p = Path()
                 >>> p
                 PosixPath('.')
                 >>> p.resolve()
                 PosixPath('/home/antoine/pathlib')

              ".." components are also eliminated (this is the only method to do so):

                 >>> p = Path('docs/../setup.py')
                 >>> p.resolve()
                 PosixPath('/home/antoine/pathlib/setup.py')

              If  the  path  doesn't  exist, an OSError is raised.  If an infinite loop is encountered along the
              resolution path, RuntimeError is raised.

       Path.rglob(pattern)
              This is like calling glob() with "**" added in front of the given pattern:

              >>> sorted(Path().rglob("*.py"))
              [PosixPath('build/lib/pathlib.py'),
               PosixPath('docs/conf.py'),
               PosixPath('pathlib.py'),
               PosixPath('setup.py'),
               PosixPath('test_pathlib.py')]

       Path.rmdir()
              Remove this directory.  The directory must be empty.

       Path.symlink_to(target, target_is_directory=False)
              Make this path a symbolic link  to  target.   Under  Windows,  target_is_directory  must  be  true
              (default  False) if the link's target is a directory.  Under POSIX, target_is_directory's value is
              ignored.

              >>> p = Path('mylink')
              >>> p.symlink_to('setup.py')
              >>> p.resolve()
              PosixPath('/home/antoine/pathlib/setup.py')
              >>> p.stat().st_size
              956
              >>> p.lstat().st_size
              8

              NOTE:
                 The order of arguments (link, target) is the reverse of os.symlink()'s.

       Path.touch(mode=0o777, exist_ok=True)
              Create a file at this given path.  If mode is given, it is combined with the process' umask  value
              to determine the file mode and access flags.  If the file already exists, the function succeeds if
              exist_ok is true (and its modification time is updated to the current time), otherwise OSError  is
              raised.

       Path.unlink()
              Remove this file or symbolic link.  If the path points to a directory, use Path.rmdir() instead.

AUTHOR

       Antoine Pitrou

       2012, Antoine Pitrou