xenial (1) psmeca.1gmt.gz

Provided by: gmt-common_5.2.1+dfsg-3build1_all bug

NAME

       psmeca - Plot focal mechanisms on maps

SYNOPSIS

       psmeca  [ table ] parameters region [ [p|s]parameters ] [ [pen][Ppointsize] ] [ depmin/depmax ] [ fill] [
       mode[args] ] [ fill] [  ] [ [pen] ] [  ] [  ] [  ] [  ] [ <format><scale>[/d]] [  num_of_plane[pen]  ]  [
       [just/dx/dy/][c|label]  ] [ [level] ] [ pen ] [ x_offset ] [ y_offset ] [ cpt] [ -ccopies ] [ -di<nodata>
       ] [ -h<headers> ] [ -i<flags> ] [ -:[i|o] ]

       Note: No space is allowed between the option flag and the associated arguments.

DESCRIPTION

       psmeca reads data values from files [or standard input] and generates  PostScript  code  that  will  plot
       focal  mechanisms  on  a  map.   Most options are the same as for psxy. The PostScript code is written to
       standard output.

REQUIRED ARGUMENTS

       table  One or more ASCII (or binary, see -bi[ncols][type]) data table file(s) holding a  number  of  data
              columns. If no tables are given then we read from standard input.

       -Jparameters (more ...)
              Select map projection.

       -R[unit]west/east/south/north[/zmin/zmax][r]
              west,  east,  south, and north specify the region of interest, and you may specify them in decimal
              degrees or in [+-]dd:mm[:ss.xxx][W|E|S|N] format. Append r if  lower  left  and  upper  right  map
              coordinates  are  given instead of w/e/s/n. The two shorthands -Rg and -Rd stand for global domain
              (0/360 and -180/+180 in longitude respectively, with -90/+90 in latitude).  Alternatively for grid
              creation,  give  Rcodelon/lat/nx/ny, where code is a 2-character combination of L, C, R (for left,
              center, or right) and T, M, B for top, middle, or bottom. e.g., BL for lower left.  This indicates
              which  point  on a rectangular region the lon/lat coordinate refers to, and the grid dimensions nx
              and ny with grid spacings via -I is used  to  create  the  corresponding  region.   Alternatively,
              specify  the  name  of an existing grid file and the -R settings (and grid spacing, if applicable)
              are copied from the grid. Using -Runit expects projected (Cartesian) coordinates  compatible  with
              chosen  -J  and  we  inversely  project  to  determine  actual rectangular geographic region.  For
              perspective view (-p), optionally append /zmin/zmax.  In case of perspective view (-p), a  z-range
              (zmin,  zmax)  can  be  appended  to indicate the third dimension. This needs to be done only when
              using the -Jz option, not when using only the -p option. In the latter case a perspective view  of
              the plane is plotted, with no third dimension.

       -S<format><scale>[/d]

       Selects  the  meaning  of  the  columns  in  the  data  file  .  In  order  to  use the same file to plot
       cross-sections, depth is in third column.  Nevertheless, it is possible to  use  "old  style"  psvelomeca
       input files without depth in third column using the -o option.

       -Sascale[/fontsize[/offset[u]]]

       Focal  mechanisms  in  Aki and Richards convention. scale adjusts the scaling of the radius of the "beach
       ball", which will be proportional to the magnitude. Scale is the size for magnitude = 5 in  inch  (unless
       c, i, or p is appended). Use the -T option to render the beach ball transparent by drawing only the nodal
       planes and the circumference. The color or shade of the compressive quadrants can be specified  with  the
       -G option. The color or shade of the extensive quadrants can be specified with the -E option. Append u to
       have the text appear below the beach ball (default is above).  Parameters  are  expected  to  be  in  the
       following columns:
          1,2:  longitude,  latitude  of  event  (-:  option interchanges order) 3: depth of event in kilometers
          4,5,6: strike, dip and rake in degrees 7: magnitude 8,9: longitude, latitude at which to  place  beach
          ball.  Entries  in  these  columns are necessary with the -C option. Using 0,0 in columns 8 and 9 will
          plot the beach ball at the longitude,  latitude  given  in  columns  1  and  2.  The  -:  option  will
          interchange  the order of columns (1,2) and (8,9).  10: Text string to appear above or below the beach
          ball (optional).

       -Scscale[/fontsize[/offset[u]]]

       Focal mechanisms in Harvard CMT convention. scale adjusts the scaling of the radius of the "beach  ball",
       which  will  be  proportional  to the magnitude. Scale is the size for magnitude = 5 (that is M0 = 4.0E23
       dynes-cm) in inch (unless c, i, or p  is  appended).   Use  the  -T  option  to  render  the  beach  ball
       transparent by drawing only the nodal planes and the circumference. The color or shade of the compressive
       quadrants can be specified with the -G option. The color or shade  of  the  extensive  quadrants  can  be
       specified  with  the -E option. Append u to have the text appear below the beach ball (default is above).
       Parameters are expected to be in the following columns:
          1,2: longitude, latitude of event (-: option interchanges order)  3:  depth  of  event  in  kilometers
          4,5,6:  strike,  dip,  and rake of plane 1 7,8,9: strike, dip, and rake of plane 2 10,11: mantissa and
          exponent of moment in dyne-cm 12,13: longitude, latitude at which to  place  beach  ball.  Entries  in
          these  columns  are necessary with the -C option. Using (0,0) in columns 12 and 13 will plot the beach
          ball at the longitude, latitude given in columns 1 and 2. The -: option will interchange the order  of
          columns (1,2) and (12,13).  14: Text string to appear above or below the beach ball (optional).

       -Sm|d|zscale[/fontsize[/offset[u]]]

       Seismic  moment  tensor  (Harvard  CMT,  with zero trace). scale adjusts the scaling of the radius of the
       "beach ball", which will be proportional to the magnitude. Scale is the size for magnitude = 5  (that  is
       scalar seismic moment = 4.0E23 dynes-cm) in inch (unless c, i, m, or p is appended). (-T0 option overlays
       best double couple transparently.) Use -Sm to plot the Harvard CMT seismic moment tensor with zero trace.
       Use  -Sd  to  plot  only the double couple part of moment tensor. Use -Sz to plot the anisotropic part of
       moment tensor (zero trace). The color or shade of the compressive quadrants can be specified with the  -G
       option.  The  color  or shade of the extensive quadrants can be specified with the -E option. Append u to
       have the text appear below the beach ball (default is above).  Parameters  are  expected  to  be  in  the
       following columns:
          1,2:  longitude,  latitude  of  event  (-:  option interchanges order) 3: depth of event in kilometers
          4,5,6,7,8,9: mrr, mtt, mff, mrt, mrf, mtf in  10*exponent  dynes-cm  10:  exponent  11,12:  longitude,
          latitude  at  which  to  place  beach ball. Entries in these columns are necessary with the -C option.
          Using (0,0) in columns 11 and 12 will plot the beach ball at the longitude, latitude given in  columns
          1  and  2.  The -: option will interchange the order of columns (1,2) and (11,12).  13: Text string to
          appear above or below the beach ball (optional).

       -Spscale[/fontsize[/offset[u]]]

       Focal mechanisms given with partial data on both planes. scale adjusts the scaling of the radius  of  the
       "beach  ball",  which  will be proportional to the magnitude. Scale is the size for magnitude = 5 in inch
       (unless c, i, or p is appended). The color or shade of the compressive quadrants can  be  specified  with
       the  -G option. The color or shade of the extensive quadrants can be specified with the -E option. Append
       u to have the text appear below the beach ball (default is above). Parameters are expected to be  in  the
       following columns:
          1,2:  longitude, latitude of event (-: option interchanges order) 3: depth of event in kilometers 4,5:
          strike, dip of plane 1 6: strike of plane 2 7: must be -1/+1 for a normal/inverse fault  8:  magnitude
          9,10:  longitude,  latitude  at which to place beach ball. Entries in these columns are necessary with
          the -C option. Using (0,0) in columns 9 and 10 will plot the beach ball  at  the  longitude,  latitude
          given  in  columns 1 and 2. The -: option will interchange the order of columns (1,2) and (9,10).  11:
          Text string to appear above or below the beach ball (optional).

       -Sx|y|tscale[/fontsize[/offset[u]]]

       Principal axis. scale adjusts the scaling of the radius of the "beach ball", which will  be  proportional
       to the magnitude. Scale is the size for magnitude = 5 (that is seismic scalar moment = 4*10e+23 dynes-cm)
       in inch (unless c, i, or p is appended). (-T0 option overlays best double couple transparently.) Use  -Sx
       to  plot  standard  Harvard CMT. Use -Sy to plot only the double couple part of moment tensor. Use -St to
       plot zero trace moment tensor. The color or shade of the compressive quadrants can be specified with  the
       -G option. The color or shade of the extensive quadrants can be specified with the -E option. Append u to
       have the text appear below the beach ball (default is above).  Parameters  are  expected  to  be  in  the
       following columns:
          1,2:  longitude,  latitude  of  event  (-:  option interchanges order) 3: depth of event in kilometers
          4,5,6,7,8,9,10,11,12: value (in 10*exponent dynes-cm), azimuth, plunge of T, N, P axis.  13:  exponent
          14,15:  longitude,  latitude at which to place beach ball. Entries in these columns are necessary with
          the -C option. Using (0,0) in columns 14 and 15 will plot the beach ball at  the  longitude,  latitude
          given  in columns 1 and 2. The -: option will interchange the order of columns (1,2) and (14,15).  16:
          Text string to appear above or below the beach ball (optional).

OPTIONAL ARGUMENTS

       -B[p|s]parameters (more ...)
              Set map boundary intervals.

       -C[pen][Ppointsize]
              Offsets focal mechanisms to the longitude, latitude specified in the last two columns of the input
              file  before  the  (optional) text string. A small circle is plotted at the initial location and a
              line connects the beachball to the circle. Specify pen and/or pointsize to change the  line  style
              and/or size of the circle.  [Defaults: pen as given by -W; pointsize 0].

       -Ddepmin/depmax
              Plots events between depmin and depmax.

       -Efill Selects filling of extensive quadrants. Usually white. Set the color [Default is white].

       -Fmode[args]
              Sets one or more attributes; repeatable. The various combinations are

       -Fa[size][/P_axis_symbol[T_axis_symbol]]
              Computes  and plots P and T axes with symbols. Optionally specify size and (separate) P and T axis
              symbols from the following: (c) circle, (d) diamond, (h) hexagon, (i) inverse triangle, (p) point,
              (s) square, (t) triangle, (x) cross. [Default: 6p/cc]

       -Fefill
              Sets the color or fill pattern for the T axis symbol. [Default as set by -E]

       -Fgfill
              Sets the color or fill pattern for the P axis symbol. [Default as set by -G]

       -Fo    Use the psvelomeca input format without depth in the third column.

       -Fp[pen]
              Draws the P axis outline using default pen (see -W), or sets pen attributes.

       -Fr[fill]
              Draw a box behind the label (if any). [Default fill is white]

       -Ft[pen]
              Draws the T axis outline using default pen (see -W), or sets pen attributes.

       -Fz[pen]
              Overlay zero trace moment tensor using default pen (see -W), or sets pen attributes.

       -Gfill Selects  filling  of  focal  mechanisms.  By  convention, the compressional quadrants of the focal
              mechanism beach balls are shaded. Set the color [Default is black].

       -K (more ...)
              Do not finalize the PostScript plot.

       -Lpen  Draws the "beach ball" outline with pen attributes instead of with the default pen set by -W.

       -M     Use the same size for any magnitude. Size is given with -S.

       -N     Does not skip symbols that fall outside frame boundary specified  by  -R  [Default  plots  symbols
              inside frame only].

       -O (more ...)
              Append to existing PostScript plot.

       -P (more ...)
              Select "Portrait" plot orientation.

       -T[num_of_planes][/pen]
              Plots the nodal planes and outlines the bubble which is transparent.  If num_of_planes is

              0: both nodal planes are plotted;

              1: only the first nodal plane is plotted;

              2: only the second nodal plane is plotted.

              Append /pen to set the pen attributes for this feature.  Default pen is as set by -W.

       -U[just/dx/dy/][c|label] (more ...)
              Draw GMT time stamp logo on plot.

       -V[level] (more ...)
              Select verbosity level [c].

       -Wpen  Set  pen  attributes  for all lines and the outline of symbols [Defaults: width = default, color =
              black, style = solid]. This setting applies to -C, -L, -T, -p, -t, and  -z,  unless  overruled  by
              options to those arguments.

       -X[a|c|f|r][x-shift[u]]

       -Y[a|c|f|r][y-shift[u]] (more ...)
              Shift plot origin.

       -Zcpt  Give a CPT file and let compressive part color be determined by the z-value in the third column.

       -ccopies (more ...)
              Specify number of plot copies [Default is 1].

       -dinodata (more ...)
              Replace input columns that equal nodata with NaN.

       -h[i|o][n][+c][+d][+rremark][+rtitle] (more ...)
              Skip or produce header record(s).

       -icols[l][sscale][ooffset][,...] (more ...)
              Select input columns (0 is first column).

       -:[i|o] (more ...)
              Swap 1st and 2nd column on input and/or output.

       -^ or just -
              Print a short message about the syntax of the command, then exits (NOTE: on Windows use just -).

       -+ or just +
              Print  an  extensive usage (help) message, including the explanation of any module-specific option
              (but not the GMT common options), then exits.

       -? or no arguments
              Print a complete usage (help) message, including the explanation of options, then exits.

       --version
              Print GMT version and exit.

       --show-datadir
              Print full path to GMT share directory and exit.

EXAMPLES

       The following file should give a normal-faulting CMT mechanism:

              gmt psmeca -R239/240/34/35.2 -Jm4c -Sc0.4 -h1 << END > test.ps
              lon lat depth str dip slip st dip slip mant exp plon plat
              239.384 34.556 12. 180 18 -88 0 72 -90 5.5 0 0 0
              END

SEE ALSO

       pspolar, psvelo, pscoupe, gmt, psbasemap, psxy

REFERENCES

       Bomford, G., Geodesy, 4th ed., Oxford University Press, 1980.

       Aki, K. and P. Richards, Quantitative Seismology, Freeman, 1980.

       F. A. Dahlen and Jeroen Tromp, Theoretical Seismology, Princeton, 1998, p.167.

       Cliff Frohlich, Cliff's Nodes Concerning Plotting Nodal Lines for P, Sh and Sv

       Seismological Research Letters, Volume 67, Number 1, January-February, 1996

       Thorne Lay, Terry C. Wallace, Modern Global Seismology, Academic Press, 1995, p.384.

       W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, Cambridge  University
       press (routine jacobi)

AUTHORS

       Genevieve Patau, Laboratory of Seismogenesis <http://www.ipgp.fr/rech/sismogenese/>, Institut de Physique
       du Globe de Paris, Departement de Sismologie, Paris, France

       2015, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe