Provided by: openssl_1.0.2g-1ubuntu4.20_amd64 

NAME
smime - S/MIME utility
SYNOPSIS
openssl smime [-encrypt] [-decrypt] [-sign] [-resign] [-verify] [-pk7out] [-[cipher]] [-in file]
[-no_alt_chains] [-certfile file] [-signer file] [-recip file] [-inform SMIME|PEM|DER] [-passin arg]
[-inkey file] [-out file] [-outform SMIME|PEM|DER] [-content file] [-to addr] [-from ad] [-subject s]
[-text] [-indef] [-noindef] [-stream] [-rand file(s)] [-md digest] [cert.pem]...
DESCRIPTION
The smime command handles S/MIME mail. It can encrypt, decrypt, sign and verify S/MIME messages.
COMMAND OPTIONS
There are six operation options that set the type of operation to be performed. The meaning of the other
options varies according to the operation type.
-encrypt
encrypt mail for the given recipient certificates. Input file is the message to be encrypted. The
output file is the encrypted mail in MIME format.
-decrypt
decrypt mail using the supplied certificate and private key. Expects an encrypted mail message in
MIME format for the input file. The decrypted mail is written to the output file.
-sign
sign mail using the supplied certificate and private key. Input file is the message to be signed. The
signed message in MIME format is written to the output file.
-verify
verify signed mail. Expects a signed mail message on input and outputs the signed data. Both clear
text and opaque signing is supported.
-pk7out
takes an input message and writes out a PEM encoded PKCS#7 structure.
-resign
resign a message: take an existing message and one or more new signers.
-in filename
the input message to be encrypted or signed or the MIME message to be decrypted or verified.
-inform SMIME|PEM|DER
this specifies the input format for the PKCS#7 structure. The default is SMIME which reads an S/MIME
format message. PEM and DER format change this to expect PEM and DER format PKCS#7 structures
instead. This currently only affects the input format of the PKCS#7 structure, if no PKCS#7 structure
is being input (for example with -encrypt or -sign) this option has no effect.
-out filename
the message text that has been decrypted or verified or the output MIME format message that has been
signed or verified.
-outform SMIME|PEM|DER
this specifies the output format for the PKCS#7 structure. The default is SMIME which write an S/MIME
format message. PEM and DER format change this to write PEM and DER format PKCS#7 structures instead.
This currently only affects the output format of the PKCS#7 structure, if no PKCS#7 structure is
being output (for example with -verify or -decrypt) this option has no effect.
-stream -indef -noindef
the -stream and -indef options are equivalent and enable streaming I/O for encoding operations. This
permits single pass processing of data without the need to hold the entire contents in memory,
potentially supporting very large files. Streaming is automatically set for S/MIME signing with
detached data if the output format is SMIME it is currently off by default for all other operations.
-noindef
disable streaming I/O where it would produce and indefinite length constructed encoding. This option
currently has no effect. In future streaming will be enabled by default on all relevant operations
and this option will disable it.
-content filename
This specifies a file containing the detached content, this is only useful with the -verify command.
This is only usable if the PKCS#7 structure is using the detached signature form where the content is
not included. This option will override any content if the input format is S/MIME and it uses the
multipart/signed MIME content type.
-text
this option adds plain text (text/plain) MIME headers to the supplied message if encrypting or
signing. If decrypting or verifying it strips off text headers: if the decrypted or verified message
is not of MIME type text/plain then an error occurs.
-CAfile file
a file containing trusted CA certificates, only used with -verify.
-CApath dir
a directory containing trusted CA certificates, only used with -verify. This directory must be a
standard certificate directory: that is a hash of each subject name (using x509 -hash) should be
linked to each certificate.
-md digest
digest algorithm to use when signing or resigning. If not present then the default digest algorithm
for the signing key will be used (usually SHA1).
-[cipher]
the encryption algorithm to use. For example DES (56 bits) - -des, triple DES (168 bits) - -des3,
EVP_get_cipherbyname() function) can also be used preceded by a dash, for example -aes_128_cbc. See
enc for list of ciphers supported by your version of OpenSSL.
If not specified triple DES is used. Only used with -encrypt.
-nointern
when verifying a message normally certificates (if any) included in the message are searched for the
signing certificate. With this option only the certificates specified in the -certfile option are
used. The supplied certificates can still be used as untrusted CAs however.
-noverify
do not verify the signers certificate of a signed message.
-nochain
do not do chain verification of signers certificates: that is don't use the certificates in the
signed message as untrusted CAs.
-nosigs
don't try to verify the signatures on the message.
-nocerts
when signing a message the signer's certificate is normally included with this option it is excluded.
This will reduce the size of the signed message but the verifier must have a copy of the signers
certificate available locally (passed using the -certfile option for example).
-noattr
normally when a message is signed a set of attributes are included which include the signing time and
supported symmetric algorithms. With this option they are not included.
-binary
normally the input message is converted to "canonical" format which is effectively using CR and LF as
end of line: as required by the S/MIME specification. When this option is present no translation
occurs. This is useful when handling binary data which may not be in MIME format.
-nodetach
when signing a message use opaque signing: this form is more resistant to translation by mail relays
but it cannot be read by mail agents that do not support S/MIME. Without this option cleartext
signing with the MIME type multipart/signed is used.
-certfile file
allows additional certificates to be specified. When signing these will be included with the message.
When verifying these will be searched for the signers certificates. The certificates should be in PEM
format.
-signer file
a signing certificate when signing or resigning a message, this option can be used multiple times if
more than one signer is required. If a message is being verified then the signers certificates will
be written to this file if the verification was successful.
-recip file
the recipients certificate when decrypting a message. This certificate must match one of the
recipients of the message or an error occurs.
-inkey file
the private key to use when signing or decrypting. This must match the corresponding certificate. If
this option is not specified then the private key must be included in the certificate file specified
with the -recip or -signer file. When signing this option can be used multiple times to specify
successive keys.
-passin arg
the private key password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl(1).
-rand file(s)
a file or files containing random data used to seed the random number generator, or an EGD socket
(see RAND_egd(3)). Multiple files can be specified separated by a OS-dependent character. The
separator is ; for MS-Windows, , for OpenVMS, and : for all others.
cert.pem...
one or more certificates of message recipients: used when encrypting a message.
-to, -from, -subject
the relevant mail headers. These are included outside the signed portion of a message so they may be
included manually. If signing then many S/MIME mail clients check the signers certificate's email
address matches that specified in the From: address.
-purpose, -ignore_critical, -issuer_checks, -crl_check, -crl_check_all, -policy_check, -extended_crl,
-x509_strict, -policy -check_ss_sig -no_alt_chains
Set various options of certificate chain verification. See verify manual page for details.
NOTES
The MIME message must be sent without any blank lines between the headers and the output. Some mail
programs will automatically add a blank line. Piping the mail directly to sendmail is one way to achieve
the correct format.
The supplied message to be signed or encrypted must include the necessary MIME headers or many S/MIME
clients wont display it properly (if at all). You can use the -text option to automatically add plain
text headers.
A "signed and encrypted" message is one where a signed message is then encrypted. This can be produced by
encrypting an already signed message: see the examples section.
This version of the program only allows one signer per message but it will verify multiple signers on
received messages. Some S/MIME clients choke if a message contains multiple signers. It is possible to
sign messages "in parallel" by signing an already signed message.
The options -encrypt and -decrypt reflect common usage in S/MIME clients. Strictly speaking these process
PKCS#7 enveloped data: PKCS#7 encrypted data is used for other purposes.
The -resign option uses an existing message digest when adding a new signer. This means that attributes
must be present in at least one existing signer using the same message digest or this operation will
fail.
The -stream and -indef options enable experimental streaming I/O support. As a result the encoding is
BER using indefinite length constructed encoding and no longer DER. Streaming is supported for the
-encrypt operation and the -sign operation if the content is not detached.
Streaming is always used for the -sign operation with detached data but since the content is no longer
part of the PKCS#7 structure the encoding remains DER.
EXIT CODES
0 the operation was completely successfully.
1 an error occurred parsing the command options.
2 one of the input files could not be read.
3 an error occurred creating the PKCS#7 file or when reading the MIME message.
4 an error occurred decrypting or verifying the message.
5 the message was verified correctly but an error occurred writing out the signers certificates.
EXAMPLES
Create a cleartext signed message:
openssl smime -sign -in message.txt -text -out mail.msg \
-signer mycert.pem
Create an opaque signed message:
openssl smime -sign -in message.txt -text -out mail.msg -nodetach \
-signer mycert.pem
Create a signed message, include some additional certificates and read the private key from another file:
openssl smime -sign -in in.txt -text -out mail.msg \
-signer mycert.pem -inkey mykey.pem -certfile mycerts.pem
Create a signed message with two signers:
openssl smime -sign -in message.txt -text -out mail.msg \
-signer mycert.pem -signer othercert.pem
Send a signed message under Unix directly to sendmail, including headers:
openssl smime -sign -in in.txt -text -signer mycert.pem \
-from steve@openssl.org -to someone@somewhere \
-subject "Signed message" | sendmail someone@somewhere
Verify a message and extract the signer's certificate if successful:
openssl smime -verify -in mail.msg -signer user.pem -out signedtext.txt
Send encrypted mail using triple DES:
openssl smime -encrypt -in in.txt -from steve@openssl.org \
-to someone@somewhere -subject "Encrypted message" \
-des3 user.pem -out mail.msg
Sign and encrypt mail:
openssl smime -sign -in ml.txt -signer my.pem -text \
| openssl smime -encrypt -out mail.msg \
-from steve@openssl.org -to someone@somewhere \
-subject "Signed and Encrypted message" -des3 user.pem
Note: the encryption command does not include the -text option because the message being encrypted
already has MIME headers.
Decrypt mail:
openssl smime -decrypt -in mail.msg -recip mycert.pem -inkey key.pem
The output from Netscape form signing is a PKCS#7 structure with the detached signature format. You can
use this program to verify the signature by line wrapping the base64 encoded structure and surrounding it
with:
-----BEGIN PKCS7-----
-----END PKCS7-----
and using the command:
openssl smime -verify -inform PEM -in signature.pem -content content.txt
Alternatively you can base64 decode the signature and use:
openssl smime -verify -inform DER -in signature.der -content content.txt
Create an encrypted message using 128 bit Camellia:
openssl smime -encrypt -in plain.txt -camellia128 -out mail.msg cert.pem
Add a signer to an existing message:
openssl smime -resign -in mail.msg -signer newsign.pem -out mail2.msg
BUGS
The MIME parser isn't very clever: it seems to handle most messages that I've thrown at it but it may
choke on others.
The code currently will only write out the signer's certificate to a file: if the signer has a separate
encryption certificate this must be manually extracted. There should be some heuristic that determines
the correct encryption certificate.
Ideally a database should be maintained of a certificates for each email address.
The code doesn't currently take note of the permitted symmetric encryption algorithms as supplied in the
SMIMECapabilities signed attribute. This means the user has to manually include the correct encryption
algorithm. It should store the list of permitted ciphers in a database and only use those.
No revocation checking is done on the signer's certificate.
The current code can only handle S/MIME v2 messages, the more complex S/MIME v3 structures may cause
parsing errors.
HISTORY
The use of multiple -signer options and the -resign command were first added in OpenSSL 1.0.0
The -no_alt_chains options was first added to OpenSSL 1.0.2b.
1.0.2g 2016-03-01 SMIME(1SSL)