Provided by: grass-doc_7.0.3-1build1_all
NAME
t.rast.neighbors - Performs a neighborhood analysis for each map in a space time raster dataset.
KEYWORDS
temporal, aggregation, raster, time
SYNOPSIS
t.rast.neighbors t.rast.neighbors --help t.rast.neighbors [-n] input=name output=name [where=sql_query] [size=integer] method=string basename=string [nprocs=integer] [--overwrite] [--help] [--verbose] [--quiet] [--ui] Flags: -n Register Null maps --overwrite Allow output files to overwrite existing files --help Print usage summary --verbose Verbose module output --quiet Quiet module output --ui Force launching GUI dialog Parameters: input=name [required] Name of the input space time raster dataset output=name [required] Name of the output space time raster dataset where=sql_query WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework Example: start_time > ’2001-01-01 12:30:00’ size=integer Neighborhood size Default: 3 method=string [required] Aggregate operation to be performed on the raster maps Options: average, median, mode, minimum, maximum, range, stddev, sum, count, variance, diversity, interspersion, quart1, quart3, perc90, quantile Default: average basename=string [required] Basename of the new generated output maps A numerical suffix separated by an underscore will be attached to create a unique identifier nprocs=integer Number of r.neighbor processes to run in parallel Default: 1
DESCRIPTION
t.rast.neighbors performs r.neighbors computations on the maps of a space time raster dataset (STRDS). This module supports a subset of options that are available in r.neighbors. The size of the neighborhood and the aggregation method can be chosen. The user must provide an input and an output space time raster dataset and the basename of the resulting raster maps. The resulting STRDS will have the same temporal resolution as the input dataset. All maps will be processed using the current region settings. The user can select a subset of the input space time raster dataset for processing using a SQL WHERE statement. The number of CPU’s to be used for parallel processing can be specified with the nprocs option, to speedup the computation on multi-core system.
EXAMPLE
To smooth the maps contained into a space time dataset run: t.rast.neighbors input=tempmean_monthly output=smooth_tempmean_monthly \ basename=tmean_smooth size=5 method=average nprocs=4 # show some info about the new space time dataset t.info smooth_tempmean_monthly +-------------------- Space Time Raster Dataset -----------------------------+ | | +-------------------- Basic information -------------------------------------+ | Id: ........................ smooth_tempmean_monthly@climate_2000_2012 | Name: ...................... smooth_tempmean_monthly | Mapset: .................... climate_2000_2012 | Creator: ................... lucadelu | Temporal type: ............. absolute | Creation time: ............. 2014-11-27 11:41:36.444579 | Modification time:.......... 2014-11-27 11:41:39.978232 | Semantic type:.............. mean +-------------------- Absolute time -----------------------------------------+ | Start time:................. 2009-01-01 00:00:00 | End time:................... 2013-01-01 00:00:00 | Granularity:................ 1 month | Temporal type of maps:...... interval +-------------------- Spatial extent ----------------------------------------+ | North:...................... 320000.0 | South:...................... 10000.0 | East:.. .................... 935000.0 | West:....................... 120000.0 | Top:........................ 0.0 | Bottom:..................... 0.0 +-------------------- Metadata information ----------------------------------+ | Raster register table:...... raster_map_register_ea1c9a83524e41a784d72744b08c6107 | North-South resolution min:. 500.0 | North-South resolution max:. 500.0 | East-west resolution min:... 500.0 | East-west resolution max:... 500.0 | Minimum value min:.......... -6.428905 | Minimum value max:.......... 18.867296 | Maximum value min:.......... 4.247691 | Maximum value max:.......... 28.767953 | Aggregation type:........... None | Number of registered maps:.. 48 | | Title: | Monthly precipitation | Description: | Dataset with monthly precipitation | Command history: | # 2014-11-27 11:41:36 | t.rast.neighbors input="tempmean_monthly" | output="smooth_tempmean_monthly" basename="tmean_smooth" size="5" | method="average" nprocs="4" | +----------------------------------------------------------------------------+ # now compare the values between original data and the smoothed one t.rast.list input=smooth_tempmean_monthly columns=name,start_time,min,max t.rast.list input=smooth_tempmean_monthly columns=name,start_time,min,max name|start_time|min|max tmean_smooth_1|2009-01-01 00:00:00|-3.361714|7.409861 tmean_smooth_2|2009-02-01 00:00:00|-1.820261|7.986794 tmean_smooth_3|2009-03-01 00:00:00|2.912971|11.799684 ... tmean_smooth_46|2012-10-01 00:00:00|9.38767|18.709297 tmean_smooth_47|2012-11-01 00:00:00|1.785653|10.911189 tmean_smooth_48|2012-12-01 00:00:00|1.784212|11.983857 t.rast.list input=tempmean_monthly columns=name,start_time,min,max name|start_time|min|max 2009_01_tempmean|2009-01-01 00:00:00|-3.380823|7.426054 2009_02_tempmean|2009-02-01 00:00:00|-1.820261|8.006386 2009_03_tempmean|2009-03-01 00:00:00|2.656992|11.819274 ... 2012_10_tempmean|2012-10-01 00:00:00|9.070884|18.709297 2012_11_tempmean|2012-11-01 00:00:00|1.785653|10.911189 2012_12_tempmean|2012-12-01 00:00:00|1.761019|11.983857
SEE ALSO
r.neighbors, t.rast.aggregate.ds, t.rast.extract, t.info, g.region, r.mask
AUTHOR
Sören Gebbert, Thünen Institute of Climate-Smart Agriculture Last changed: $Date: 2016-01-13 00:30:14 +0100 (Wed, 13 Jan 2016) $ Main index | Temporal index | Topics index | Keywords index | Full index © 2003-2016 GRASS Development Team, GRASS GIS 7.0.3 Reference Manual