xenial (1) v.net.salesman.1grass.gz

Provided by: grass-doc_7.0.3-1build1_all bug

NAME

       v.net.salesman  - Creates a cycle connecting given nodes (Traveling salesman problem).
       Note that TSP is NP-hard, heuristic algorithm is used by this module and created cycle may be sub optimal

KEYWORDS

       vector, network, salesman

SYNOPSIS

       v.net.salesman
       v.net.salesman --help
       v.net.salesman   [-g]   input=name   output=name    [arc_layer=string]     [arc_type=string[,string,...]]
       [node_layer=string]        [arc_column=string]        [arc_backward_column=string]        [sequence=name]
       center_cats=range  [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -g
           Use geodesic calculation for longitude-latitude locations

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of input vector map
           Or data source for direct OGR access

       output=name [required]
           Name for output vector map

       arc_layer=string
           Arc layer
           Vector  features  can have category values in different layers. This number determines which layer to
           use. When used with direct OGR access this is the layer name.
           Default: 1

       arc_type=string[,string,...]
           Arc type
           Options: line, boundary
           Default: line,boundary

       node_layer=string
           Node layer (used for cities)
           Vector features can have category values in different layers. This number determines which  layer  to
           use. When used with direct OGR access this is the layer name.
           Default: 2

       arc_column=string
           Arc forward/both direction(s) cost column (number)

       arc_backward_column=string
           EXPERIMENTAL: Arc backward direction cost column (number)

       sequence=name
           Name for output file holding node sequence ("-" for stdout)

       center_cats=range [required]
           Category values
           Categories of points (’cities’) on nodes (layer is specified by nlayer)

DESCRIPTION

       v.net.salesman calculates the optimal route to visit nodes on a vector network.

       Costs  may  be  either  line lengths, or attributes saved in a database table. These attribute values are
       taken as costs of whole segments, not as costs to traverse a length unit (e.g.  meter)  of  the  segment.
       For  example,  if  the  speed limit is 100 km / h, the cost to traverse a 10 km long road segment must be
       calculated as
       length / speed = 10 km / (100 km/h) = 0.1 h.
       Supported are cost assignments for arcs, and also different costs for both directions of a  vector  line.
       For areas, costs will be calculated along boundary lines.

       The  input  vector  needs  to  be  prepared  with  v.net  operation=connect  in  order  to connect points
       representing center nodes to the network.

       Points specified by category must be exactly on network nodes, and the  input  vector  map  needs  to  be
       prepared with v.net operation=connect.

NOTES

       Arcs can be closed using cost = -1.

EXAMPLE

       Traveling salesman for 6 digitized nodes (Spearfish):

       Shortest path, along unimproved roads:

       Fastest path, along highways:

       Searching for the shortest path using distance and the fastest path using traveling time according to the
       speed limits of different road types:
       # Spearfish
       g.copy vect=roads,myroads
       # we have 6 locations to visit on our trip
       echo "1|601653.5|4922869.2|a
       2|608284|4923776.6|b
       3|601845|4914981.9|c
       4|596270|4917456.3|d
       5|593330.8|4924096.6|e
       6|598005.5|4921439.2|f" | v.in.ascii in=- cat=1 x=2 y=3 out=centers col="cat integer, \
                                east double precision, north double precision, label varchar(43)"
       # verify data preparation
       v.db.select centers
       v.category centers op=report
       # type       count        min        max
       # point          6          1          6
       # create lines map connecting points to network (on layer 2)
       v.net myroads points=centers out=myroads_net op=connect thresh=500
       v.category myroads_net op=report
       # Layer / table: 1 / myroads_net
       # type       count        min        max
       # line         837          1          5
       #
       # Layer: 2
       # type       count        min        max
       # point          6          1          5
       # find the shortest path
       v.net.salesman myroads_net center_cats=1-6 out=mysalesman_distance
       # set up costs as traveling time
       # create unique categories for each road in layer 3
       v.category in=myroads_net out=myroads_net_time opt=add cat=1 layer=3 type=line
       # add new table for layer 3
       v.db.addtable myroads_net_time layer=3 col="cat integer,label varchar(43),length double precision,speed double precision,cost double precision,bcost double precision"
       # copy road type to layer 3
       v.to.db myroads_net_time layer=3 qlayer=1 opt=query qcolumn=label columns=label
       # upload road length in miles
       v.to.db myroads_net_time layer=3 type=line option=length col=length unit=miles
       # set speed limits in miles / hour
       v.db.update myroads_net_time layer=3 col=speed val="5.0"
       v.db.update myroads_net_time layer=3 col=speed val="75.0" where="label=’interstate’"
       v.db.update myroads_net_time layer=3 col=speed val="75.0" where="label=’primary highway, hard surface’"
       v.db.update myroads_net_time layer=3 col=speed val="50.0" where="label=’secondary highway, hard surface’"
       v.db.update myroads_net_time layer=3 col=speed val="25.0" where="label=’light-duty road, improved surface’"
       v.db.update myroads_net_time layer=3 col=speed val="5.0" where="label=’unimproved road’"
       # define traveling costs as traveling time in minutes:
       # set forward costs
       v.db.update myroads_net_time layer=3 col=cost val="length / speed * 60"
       # set backward costs
       v.db.update myroads_net_time layer=3 col=bcost val="length / speed * 60"
       # find the fastest path
       v.net.salesman myroads_net_time arc_layer=3 node_layer=2 arc_column=cost arc_backward_column=bcost center_cats=1-6 out=mysalesman_time
       To display the result, run for example:
       # Display the results
       g.region vector=myroads_net
       # shortest path
       d.mon x0
       d.vect myroads_net
       d.vect centers -c icon=basic/triangle
       d.vect mysalesman_distance col=green width=2
       d.font Vera
       d.vect centers col=red disp=attr attrcol=label lsize=12
       # fastest path
       d.mon x1
       d.vect myroads_net
       d.vect centers -c icon=basic/triangle
       d.vect mysalesman_time col=green width=2
       d.font Vera
       d.vect centers col=red disp=attr attrcol=label lsize=12

SEE ALSO

       d.path, v.net, v.net.alloc, v.net.iso, v.net.path, v.net.steiner

AUTHOR

       Radim Blazek, ITC-Irst, Trento, Italy
       Markus Metz
       Documentation: Markus Neteler, Markus Metz

       Last changed: $Date: 2014-12-24 15:44:33 +0100 (Wed, 24 Dec 2014) $

       Main index | Vector index | Topics index | Keywords index | Full index

       © 2003-2016 GRASS Development Team, GRASS GIS 7.0.3 Reference Manual