Provided by: gmt-common_5.2.1+dfsg-3build1_all bug

NAME

       x2sys_init - Initialize a new x2sys track database

SYNOPSIS

       x2sys_init TAG deffile [ c|f|g|e ] [ suffix ] [  ] [ d|g ] [ dx[/dy] ] [ d|sunit ] [ region ] [ [level] ]
       [ t|dgap ]

       Note: No space is allowed between the option flag and the associated arguments.

DESCRIPTION

       x2sys_init is the starting point for anyone wishing to use x2sys; it initializes a set of data bases that
       are particular to one kind of track data. These data, their associated data bases, and key parameters are
       given  a  short-hand  notation  called an x2sys TAG. The TAG keeps track of settings such as file format,
       whether the data are geographic or not, and the binning resolution for track indices. Running  x2sys_init
       is  a prerequisite to running any of the other x2sys programs, such as x2sys_binlist, which will create a
       crude representation of where each data track go within the domain and which observations are  available;
       this  information  serves as input to x2sys_put which updates the track data base. Then, x2sys_get can be
       used to find which tracks and data are available inside a given region. With that list of tracks you  can
       use  x2sys_cross  to  calculate  track  crossovers,  use  x2sys_report  to report crossover statistics or
       x2sys_list  to  pull  out  selected  crossover  information  that  x2sys_solve  can  use   to   determine
       track-specific  systematic  corrections.  These  corrections  may  be used with x2sys_datalist to extract
       corrected data values for use in subsequent work.  Because you  can  run  x2sys_init  you  must  set  the
       environmental  parameter X2SYS_HOME to a directory where you have write permission, which  is where x2sys
       can keep track of your settings.

REQUIRED ARGUMENTS

       TAG    The unique name of this data type x2sys TAG.

       -Ddeffile
              Definition file prefix for this data set  [See  DEFINITION  FILES  below  for  more  information].
              Specify full path if the file is not in the current directory.

OPTIONAL ARGUMENTS

       -Cc|f|g|e
              Select procedure for along-track distance calculation when needed by other programs:

              c Cartesian distances [Default, unless -G is set].

              f Flat Earth distances.

              g Great circle distances [Default if -G is set].

              e Geodesic distances on current GMT ellipsoid.

       -Esuffix
              Specifies  the  file  extension  (suffix) for these data files. If not given we use the definition
              file prefix as the suffix (see -D).

       -F     Force creating new files if old ones are present [Default will abort if old TAG files are found].

       -Gd|g  Selects geographical coordinates. Append d for discontinuity at the Dateline (makes  longitude  go
              from  -180  to  +  180)  or  g  for  discontinuity  at Greenwich (makes longitude go from 0 to 360
              [Default]). If not given we assume the data are Cartesian.

       -Idx[/dy]
              x_inc [and optionally y_inc] is the grid spacing. Append m to indicate minutes or  c  to  indicate
              seconds  for geographic data. These spacings refer to the binning used in the track bin-index data
              base.

       -Nd|sunit
              Sets the units used for distance and speed when requested by other programs. Append d for distance
              or s for speed, then give the desired unit as  c  (Cartesian  userdist  or  userdist/usertime),  e
              (meters or m/s), f (feet or feet/s), k (km or kms/hr), m (miles or miles/hr), n (nautical miles or
              knots)  or  u  (survey feet or survey feet/s). [Default is -Ndk -Nse (km and m/s) if -G is set and
              -Ndc and -Nsc otherwise (Cartesian units)].

       -R[unit]west/east/south/north[/zmin/zmax][r]
              west, east, south, and north specify the region of interest, and you may specify them  in  decimal
              degrees  or  in  [+-]dd:mm[:ss.xxx][W|E|S|N]  format.  Append  r if lower left and upper right map
              coordinates are given instead of w/e/s/n. The two shorthands -Rg and -Rd stand for  global  domain
              (0/360 and -180/+180 in longitude respectively, with -90/+90 in latitude).  Alternatively for grid
              creation,  give  Rcodelon/lat/nx/ny, where code is a 2-character combination of L, C, R (for left,
              center, or right) and T, M, B for top, middle, or bottom. e.g., BL for lower left.  This indicates
              which point on a rectangular region the lon/lat coordinate refers to, and the grid  dimensions  nx
              and  ny  with  grid  spacings  via  -I is used to create the corresponding region.  Alternatively,
              specify the name of an existing grid file and the -R settings (and grid  spacing,  if  applicable)
              are  copied  from the grid. Using -Runit expects projected (Cartesian) coordinates compatible with
              chosen -J and we inversely  project  to  determine  actual  rectangular  geographic  region.   For
              perspective  view (-p), optionally append /zmin/zmax.  In case of perspective view (-p), a z-range
              (zmin, zmax) can be appended to indicate the third dimension. This needs  to  be  done  only  when
              using  the -Jz option, not when using only the -p option. In the latter case a perspective view of
              the plane is plotted, with no third dimension. For Cartesian data just  give  xmin/xmax/ymin/ymax.
              This option bases the statistics on those COE that fall inside the specified domain.

       -V[level] (more ...)
              Select verbosity level [c].

       -Wt|dgap
              Give  t  or  d  and  append  the  corresponding maximum time gap (in user units; this is typically
              seconds [Infinity]), or distance (for units, see ) gap [Infinity]) allowed between  the  two  data
              points  immediately on either side of a crossover. If these limits are exceeded then a data gap is
              assumed and no COE will be determined.

       -^ or just -
              Print a short message about the syntax of the command, then exits (NOTE: on Windows use just -).

       -+ or just +
              Print an extensive usage (help) message, including the explanation of any  module-specific  option
              (but not the GMT common options), then exits.

       -? or no arguments
              Print a complete usage (help) message, including the explanation of options, then exits.

       --version
              Print GMT version and exit.

       --show-datadir
              Print full path to GMT share directory and exit.

DEFINITION FILES

       These  *.def  files  contain  information  about  the  data file format and have two sections: (1) header
       information and (2) column information. All header information starts with the character # in  the  first
       column,  immediately  followed  by  an  upper-case  directive.  If  the directive takes an argument it is
       separated by white-space. You may append a trailing # comments. Five directives are recognized:

       ASCII states that the data files are in ASCII format.

       BINARY states that the data files are native binary files.

       NETCDF states that the data files are COARDS-compliant 1-D netCDF files.

       SKIP takes an integer argument which is either the number of lines to skip (when reading ASCII files)  or
       the number of bytes to skip (when reading native binary files). Not used with netCDF files.

       GEO  indicates  that  these  files  are  geographic  data  sets,  with  periodicities in the x-coordinate
       (longitudes). Alternatively, use -G.

       MULTISEG means each track consists of multiple segments separated by a GMT segment header (alternatively,
       use -m when defining the system TAG). Not used with netCDF files.

       The column information consists of one line per column in the order the columns appear in the data  file.
       For each column you must provide seven attributes:

       name type NaN NaN-proxy scale offset oformat

       name  is the name of the column variable. It is expected that you will use the special names lon (or x if
       Cartesian) and lat (or y) for the two required coordinate columns, and time when optional time  data  are
       present.

       type  is  always  a for ASCII representations of numbers, whereas for binary files you may choose among c
       for signed 1-byte character (-127,+128), u for unsigned  byte  (0-255),  h  for  signed  2-byte  integers
       (-32768,+32767),  i  for  signed  4-byte  integers (-2,147,483,648,+2,147,483,647), f for 4-byte floating
       points and d for 8-byte double precision floating points.  For  netCDF,  simply  use  d  as  netCDF  will
       automatically handle type-conversions during reading.

       NaN is Y if certain values (e.g, -9999) are to be replaced by NAN, and N otherwise.

       NaN-proxy is that special value (e.g., -9999).

       scale is used to multiply the data after reading.

       offset is used to add to the scaled data.

       oformat is a C-style format string used to print values from this column.

       If   you   give  -  as  the  oformat  then  GMT's  formatting  machinery  will  be  used  instead  (i.e.,
       FORMAT_FLOAT_OUT, FORMAT_GEO_MAP, FORMAT_DATE_MAP, FORMAT_CLOCK_MAP).  Some  file  formats  already  have
       definition  files  premade.  These include mgd77 (for plain ASCII MGD77 data files), mgd77+ (for enhanced
       MGD77+ netCDF files), gmt (for old mgg supplement binary files), xy (for plain ASCII x,  y  tables),  xyz
       (same,  with  one  z-column),  geo  (for plain ASCII longitude, latitude files), and geoz (same, with one
       z-column).

EXAMPLES

       If you have a large set of track data files you can organize them using the x2sys  tools.  Here  we  will
       outline  the  steps. Let us assume that your track data file format consist of 2 header records with text
       information followed by any number of identically formatted data records with 6 columns (lat, lon,  time,
       obs1,  obs2, obs3) and that files are called *.trk. We will call this the "line" format. First, we create
       the line.def file:
                   ┌────────────────┬────────────────┬─────┬───────────┬───────┬────────┬─────────┐
                   │ # Define  file │                │     │           │       │        │         │
                   │ for  the  line │                │     │           │       │        │         │
                   │ format         │                │     │           │       │        │         │
                   ├────────────────┼────────────────┼─────┼───────────┼───────┼────────┼─────────┤
                   │ # SKIP 2       │ #    Skip    2 │     │           │       │        │         │
                   │                │ header records │     │           │       │        │         │
                   ├────────────────┼────────────────┼─────┼───────────┼───────┼────────┼─────────┤
                   │ # GEO          │ #   Data   are │     │           │       │        │         │
                   │                │ geographic     │     │           │       │        │         │
                   ├────────────────┼────────────────┼─────┼───────────┼───────┼────────┼─────────┤
                   │ #name          │ type           │ NaN │ NaN-proxy │ scale │ offset │ oformat │
                   ├────────────────┼────────────────┼─────┼───────────┼───────┼────────┼─────────┤
                   │ lat            │ a              │ N   │ 0         │ 1     │ 0      │ %9.5f   │
                   ├────────────────┼────────────────┼─────┼───────────┼───────┼────────┼─────────┤
                   │ lon            │ a              │ N   │ 0         │ 1     │ 0      │ %10.5f  │
                   ├────────────────┼────────────────┼─────┼───────────┼───────┼────────┼─────────┤
                   │ time           │ a              │ N   │ 0         │ 1     │ 0      │ %7.1f   │
                   ├────────────────┼────────────────┼─────┼───────────┼───────┼────────┼─────────┤
                   │ obs1           │ a              │ N   │ 0         │ 1     │ 0      │ %7.2f   │
                   ├────────────────┼────────────────┼─────┼───────────┼───────┼────────┼─────────┤
                   │ obs2           │ a              │ N   │ 0         │ 1     │ 0      │ %7.2f   │
                   ├────────────────┼────────────────┼─────┼───────────┼───────┼────────┼─────────┤
                   │ obs3           │ a              │ N   │ 0         │ 1     │ 0      │ %7.2f   │
                   └────────────────┴────────────────┴─────┴───────────┴───────┴────────┴─────────┘

       Next we create the TAG and the TAG directory with the databases for  these  line  track  files.  Assuming
       these  contain  geographic data and that we want to keep track of the data distribution at a 1 x 1 degree
       resolution, with distances in km calculated along geodesics and with speeds given in knots, we may run

              gmt x2sys_init LINE -V -G -Dline -Rg -Ce -Ndk -NsN -I1/1 -Etrk

       where we have selected LINE to be our x2sys tag. When x2sys tools try to read your line data  files  they
       will  first  look  in  the  current  directory  and  second  look in the file TAG_paths.txt for a list of
       additional directories to examine. Therefore, create such a file (here LINE_paths.txt) and stick the full
       paths to your data directories there. All TAG-related files (definition files, tag files, and track  data
       bases  created)  will  be  expected  to  be  in  the directory pointed to by $X2SYS_HOME/TAG (in our case
       $X2SYS_HOME/LINE). Note that the argument to -D must contain the full path if the *.def file  is  not  in
       the  current  directory.  x2sys_init will copy this file to the $X2SYS_HOME/TAG directory where all other
       x2sys tools will expect to find it.

       Create tbf file(s):
              Once the (empty) TAG databases have been initialized we go through a two-step process to  populate
              them. First we run x2sys_binlist on all our track files to create one (or more) multisegment track
              bin-index  files  (tbf).  These  contain  information  on  which  1  x 1 degree bins (or any other
              blocksize; see -I) each track has visited and which observations (in your case obs1,  obs2,  obs3)
              were  actually  observed (not all tracks may have all three kinds of observations everywhere). For
              instance, if your tracks are listed in the file tracks.lis we may run this command:

                     gmt x2sys_binlist -V -TLINE :tracks.lis > tracks.tbf

       Update index data base:
              Next, the track bin-index files are fed to x2sys_put which will insert the  information  into  the
              TAG databases:

                     gmt x2sys_put -V -TLINE tracks.tbf

       Search for data:
              You may now use x2sys_get to find all the tracks within a certain sub-region, and optionally limit
              the  search  to  those tracks that have a particular combination of observables. E.g., to find all
              the tracks which has both obs1 and obs3 inside the specified region, run

                     gmt x2sys_get -V -TLINE -R20/40/-40/-20 -Fobs1,obs3 > tracks.tbf

       MGD77[+] or GMT:
              Definition files already exist for MGD77 files (both  standard  ASCII  and  enhanced  netCDF-based
              MGD77+  files) and the old *.gmt files manipulated by the mgg supplements; for these data sets the
              -C and -N will default to great circle distance calculation in km and speed in m/s. There are also
              definition files for plain x,y[,z] and lon,lat[,z] tracks. To initiate new track databases  to  be
              used with MGD77 data from NGDC, try

                     gmt x2sys_init MGD77 -V -Dmgd77 -Emgd77 -Rd -Gd -Nsn -I1/1 -Wt900 -Wd5

              where  we  have chosen a 15 minute (900 sec) or 5 km threshold to indicate a data gap and selected
              knots as the speed; the other steps are similar.

       Binary files:
              Let us pretend that your line files actually are binary files with a 128-byte header structure (to
              be skipped) followed by the data records and where lon, lat, time  are  double  precision  numbers
              while  the  three  observations  are 2-byte integers which must be multiplied by 0.1. Finally, the
              first two observations may be -32768 which means there is no data available. All that is needed is
              a different line.def file:
                      ────────────────────────────────────────────────────────────────────────────────
                        # Define  file
                        for the binary
                        line format
                      ────────────────────────────────────────────────────────────────────────────────
                        # BINARY         #  File is now
                                         binary
                      ────────────────────────────────────────────────────────────────────────────────
                        # SKIP 128       #   Skip   128
                                         bytes
                      ────────────────────────────────────────────────────────────────────────────────
                        # GEO            #   Data   are
                                         geographic
                      ────────────────────────────────────────────────────────────────────────────────
                        #name            type             NaN   NaN-proxy   scale   offset   oformat
                      ────────────────────────────────────────────────────────────────────────────────
                        lon              d                N     0           1       0        %10.5f
                      ────────────────────────────────────────────────────────────────────────────────
                        lat              d                N     0           1       0        %9.5f
                      ────────────────────────────────────────────────────────────────────────────────
                        time             d                N     0           1       0        %7.1f
                      ────────────────────────────────────────────────────────────────────────────────
                        obs1             h                Y     -32768      0.1     0        %6.1f
                      ────────────────────────────────────────────────────────────────────────────────
                        obs2             h                Y     -32768      0.1     0        %6.1f
                      ────────────────────────────────────────────────────────────────────────────────
                        obs3             h                N     0           0.1     0        %6.1f
                      ┌────────────────┬────────────────┬─────┬───────────┬───────┬────────┬─────────┐
                      │                │                │     │           │       │        │         │
              The rest│of the steps are│identical.      │     │           │       │        │         │
                      │                │                │     │           │       │        │         │
--
SEE ALSO              │                │                │     │           │       │        │         │
--
COPYRIGHT             │                │                │     │           │       │        │         │
       2015, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe

5.2.1                                           January 28, 2016                                X2SYS_INIT(1gmt)