Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all
NAME
clags2.f -
SYNOPSIS
Functions/Subroutines subroutine clags2 (UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV, SNV, CSQ, SNQ) CLAGS2
Function/Subroutine Documentation
subroutine clags2 (logical UPPER, real A1, complex A2, real A3, real B1, complex B2, real B3, real CSU, complex SNU, real CSV, complex SNV, real CSQ, complex SNQ) CLAGS2 Purpose: CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such that if ( UPPER ) then U**H *A*Q = U**H *( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V**H*B*Q = V**H *( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U**H *A*Q = U**H *( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V**H *B*Q = V**H *( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) where U = ( CSU SNU ), V = ( CSV SNV ), ( -SNU**H CSU ) ( -SNV**H CSV ) Q = ( CSQ SNQ ) ( -SNQ**H CSQ ) The rows of the transformed A and B are parallel. Moreover, if the input 2-by-2 matrix A is not zero, then the transformed (1,1) entry of A is not zero. If the input matrices A and B are both not zero, then the transformed (2,2) element of B is not zero, except when the first rows of input A and B are parallel and the second rows are zero. Parameters: UPPER UPPER is LOGICAL = .TRUE.: the input matrices A and B are upper triangular. = .FALSE.: the input matrices A and B are lower triangular. A1 A1 is REAL A2 A2 is COMPLEX A3 A3 is REAL On entry, A1, A2 and A3 are elements of the input 2-by-2 upper (lower) triangular matrix A. B1 B1 is REAL B2 B2 is COMPLEX B3 B3 is REAL On entry, B1, B2 and B3 are elements of the input 2-by-2 upper (lower) triangular matrix B. CSU CSU is REAL SNU SNU is COMPLEX The desired unitary matrix U. CSV CSV is REAL SNV SNV is COMPLEX The desired unitary matrix V. CSQ CSQ is REAL SNQ SNQ is COMPLEX The desired unitary matrix Q. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2011
Author
Generated automatically by Doxygen for LAPACK from the source code.