Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all
NAME
cunmrz.f -
SYNOPSIS
Functions/Subroutines subroutine cunmrz (SIDE, TRANS, M, N, K, L, A, LDA, TAU, C, LDC, WORK, LWORK, INFO) CUNMRZ
Function/Subroutine Documentation
subroutine cunmrz (character SIDE, character TRANS, integer M, integer N, integer K, integer L, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( ldc, * ) C, integer LDC, complex, dimension( * ) WORK, integer LWORK, integer INFO) CUNMRZ Purpose: CUNMRZ overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix defined as the product of k elementary reflectors Q = H(1) H(2) . . . H(k) as returned by CTZRZF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'. Parameters: SIDE SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right. TRANS TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H. M M is INTEGER The number of rows of the matrix C. M >= 0. N N is INTEGER The number of columns of the matrix C. N >= 0. K K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0. L L is INTEGER The number of columns of the matrix A containing the meaningful part of the Householder reflectors. If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0. A A is COMPLEX array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CTZRZF in the last k rows of its array argument A. A is modified by the routine but restored on exit. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K). TAU TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CTZRZF. C C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q. LDC LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M). WORK WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2015 Contributors: A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA Further Details:
Author
Generated automatically by Doxygen for LAPACK from the source code.