Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all
NAME
dlaed0.f -
SYNOPSIS
Functions/Subroutines subroutine dlaed0 (ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, WORK, IWORK, INFO) DLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method.
Function/Subroutine Documentation
subroutine dlaed0 (integer ICOMPQ, integer QSIZ, integer N, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision, dimension( ldq, * ) Q, integer LDQ, double precision, dimension( ldqs, * ) QSTORE, integer LDQS, double precision, dimension( * ) WORK, integer, dimension( * ) IWORK, integer INFO) DLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced symmetric tridiagonal matrix using the divide and conquer method. Purpose: DLAED0 computes all eigenvalues and corresponding eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. Parameters: ICOMPQ ICOMPQ is INTEGER = 0: Compute eigenvalues only. = 1: Compute eigenvectors of original dense symmetric matrix also. On entry, Q contains the orthogonal matrix used to reduce the original matrix to tridiagonal form. = 2: Compute eigenvalues and eigenvectors of tridiagonal matrix. QSIZ QSIZ is INTEGER The dimension of the orthogonal matrix used to reduce the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. N N is INTEGER The dimension of the symmetric tridiagonal matrix. N >= 0. D D is DOUBLE PRECISION array, dimension (N) On entry, the main diagonal of the tridiagonal matrix. On exit, its eigenvalues. E E is DOUBLE PRECISION array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix. On exit, E has been destroyed. Q Q is DOUBLE PRECISION array, dimension (LDQ, N) On entry, Q must contain an N-by-N orthogonal matrix. If ICOMPQ = 0 Q is not referenced. If ICOMPQ = 1 On entry, Q is a subset of the columns of the orthogonal matrix used to reduce the full matrix to tridiagonal form corresponding to the subset of the full matrix which is being decomposed at this time. If ICOMPQ = 2 On entry, Q will be the identity matrix. On exit, Q contains the eigenvectors of the tridiagonal matrix. LDQ LDQ is INTEGER The leading dimension of the array Q. If eigenvectors are desired, then LDQ >= max(1,N). In any case, LDQ >= 1. QSTORE QSTORE is DOUBLE PRECISION array, dimension (LDQS, N) Referenced only when ICOMPQ = 1. Used to store parts of the eigenvector matrix when the updating matrix multiplies take place. LDQS LDQS is INTEGER The leading dimension of the array QSTORE. If ICOMPQ = 1, then LDQS >= max(1,N). In any case, LDQS >= 1. WORK WORK is DOUBLE PRECISION array, If ICOMPQ = 0 or 1, the dimension of WORK must be at least 1 + 3*N + 2*N*lg N + 3*N**2 ( lg( N ) = smallest integer k such that 2^k >= N ) If ICOMPQ = 2, the dimension of WORK must be at least 4*N + N**2. IWORK IWORK is INTEGER array, If ICOMPQ = 0 or 1, the dimension of IWORK must be at least 6 + 6*N + 5*N*lg N. ( lg( N ) = smallest integer k such that 2^k >= N ) If ICOMPQ = 2, the dimension of IWORK must be at least 3 + 5*N. INFO INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute an eigenvalue while working on the submatrix lying in rows and columns INFO/(N+1) through mod(INFO,N+1). Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Contributors: Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
Author
Generated automatically by Doxygen for LAPACK from the source code.