Provided by: libclippoly-dev_0.11-6_amd64 bug

NAME

       m_alloc2,  m_free2,  v_alloc2,  v_free2,  m_alloc3,  m_free3,  v_alloc3,  v_free3, m_cpy2,
       m_unity2, v_cpy2, v_fill2, v_unity2, v_zero2, m_cpy3, m_unity3, v_cpy3, v_fill3, v_unity3,
       v_zero3, m_det2, v_len2, vtmv_mul2, vv_inprod2, m_inv2, m_tra2, mm_add2, mm_mul2, mm_sub2,
       mtmm_mul2, sm_mul2,  mv_mul2,  sv_mul2,  v_homo2,  v_norm2,  vv_add2,  vv_sub2,  vvt_mul2,
       m_det3,   v_len3,  vtmv_mul3,  vv_inprod3,  m_inv3,  m_tra3,  mm_add3,  mm_mul3,  mm_sub3,
       mtmm_mul3, sm_mul3, mv_mul3,  sv_mul3,  v_homo3,  v_norm3,  vv_add3,  vv_cross3,  vv_sub3,
       vvt_mul3,  miraxis2,  mirorig2,  mirplane2,  rot2,  scaorig2, scaplane2, scaxis2, transl2,
       miraxis3,  mirorig3,  mirplane3,  prjorthaxis,  prjpersaxis,  rot3,  scaorig3,  scaplane3,
       scaxis3, transl3 - 3d graphics and associated matrix and vector routines

SYNOPSIS

       #include <graphmat.h>

       /* Data initialisation */

       hmat2_t   *m_alloc2(m_result)
       hmat2_t   *m_result;

       void      m_free2(matrix)
       hmat2_t   *matrix;

       hvec2_t   *v_alloc2(v_result)
       hvec2_t   *v_result;

       void      v_free2(vector)
       hmat2_t   *vector;

       hmat3_t   *m_alloc3(m_result)
       hmat3_t   *m_result;

       void      m_free3(matrix)
       hmat3_t   *matrix;

       hvec3_t   *v_alloc3(v_result)
       hvec3_t   *v_result;

       void      v_free3(vector)
       hmat3_t   *vector;

       hmat2_t   *m_cpy2(m_source, m_result)
       hmat2_t   *m_source, *m_result;

       hmat2_t   *m_unity2( m_result)
       hmat2_t   *m_result;

       hvec2_t   *v_cpy2(v_source, v_result)
       hvec2_t   *v_source, *v_result;

       hvec2_t   *v_fill2(x, y, w, v_result)
       double    x, y, w;
       hvec2_t   *v_result;

       hvec2_t   *v_unity2(axis, v_result)
       b_axis    axis;
       hvec2_t   *v_result;

       hvec2_t   *v_zero2(v_result)
       hvec2_t   *v_result;

       hmat3_t   *m_cpy3(m_source, m_result)
       hmat3_t   *m_source, *m_result;

       hmat3_t   *m_unity3(m_result)
       hmat3_t   *m_result;

       hvec3_t   *v_cpy3(v_source, v_result)
       hvec3_t   *v_source, *v_result;

       hvec3_t   *v_fill3(x, y, z, w, v_result)
       double    x, y, z, w;
       hvec3_t   *v_result;

       hvec3_t   *v_unity3(axis, v_result)
       b_axis    axis;
       hvec3_t   *v_result;

       hvec3_t   *v_zero3(vector)
       hvec3_t   *vector;

       /* Basic Linear Algebra */

       double    m_det2(matrix)
       hmat2_t   *matrix;

       double    v_len2(vector)
       hvec2_t   *vector;

       double    vtmv_mul2(vector, matrix)
       hvec2_t   *vector;
       hmat2_t   *matrix;

       double    vv_inprod2(vectorA, vectorB)
       hvec2_t   *vectorA, *vectorB;

       hmat2_t   *m_inv2(matrix, m_result)
       hmat2_t   *matrix, *m_result;

       hmat2_t   *m_tra2(matrix, m_result)
       hmat2_t   *matrix, *m_result;

       hmat2_t   *mm_add2(matrixA, matrixB, m_result)
       hmat2_t   *matrixA, *matrixB, *m_result;

       hmat2_t   *mm_mul2(matrixA, matrixB, m_result)
       hmat2_t   *matrixA, *matrixB, *m_result;

       hmat2_t   *mm_sub2(matrixA, matrixB, m_result)
       hmat2_t   *matrixA, *matrixB, *m_result;

       hmat2_t   *mtmm_mul2(matrixA, matrixB, m_result)
       hmat2_t   *matrixA, *matrixB, *m_result;

       hmat2_t   *sm_mul2(scalar, matrix, m_result)
       double    scalar;
       hmat2_t   *matrix, *m_result;

       hmat2_t   *vvt_mul2(vectorA, vectorB, m_result)
       hvec2_t   *vectorA, *vectorB;
       hmat2_t   *m_result;

       hvec2_t   *mv_mul2(matrix, vector, v_result)
       hmat2     *matrix;
       hvec2_t   *vector, *v_result;

       hvec2_t   *sv_mul2(scalar, vector, v_result)
       double    scalar;
       hvec2_t   *vector, *v_result;

       hvec2_t   *v_homo2(vector, v_result)
       hvec2_t   *vector, *v_result;

       hvec2_t   *v_norm2(vector, v_result)
       hvec2_t   *vector, *v_result;

       hvec2_t   *vv_add2(vectorA, vectorB, v_result)
       hvec2_t   *vectorA, *vectorB, *v_result;

       hvec2_t   *vv_sub2(vectorA, vectorB, v_result)
       hvec2_t   *vectorA, *vectorB, *v_result;

       double    m_det3(matrix)
       hmat3_t   *matrix;

       double    v_len3(vector)
       hvec3_t   *vector;

       double    vtmv_mul3(vector, matrix)
       hvec3_t   *vector;
       hmat3_t   *matrix;

       double    vv_inprod3(vectorA, vectorB)
       hvec3_t   *vectorA, *vectorB;

       hmat3_t   *m_inv3(matrix, m_result)
       hmat3_t   *matrix, *m_result;

       hmat3_t   *m_tra3(matrix, m_result)
       hmat3_t   *matrix, *m_result;

       hmat3_t   *mm_add3(matrixA, matrixB, m_result)
       hmat3_t   *matrixA, *matrixB, *m_result;

       hmat3_t   *mm_mul3(matrixA, matrixB, m_result)
       hmat3_t   *matrixA, *matrixB, *m_result;

       hmat3_t   *mm_sub3(matrixA, matrixB, m_result)
       hmat3_t   *matrixA, *matrixB, *m_result;

       hmat3_t   *mtmm_mul3(matrixA, matrixB, m_result)
       hmat3_t   *matrixA, *matrixB, *m_result;

       hmat3_t   *sm_mul3(scalar, matrix, m_result)
       double    scalar;
       hmat3_t   *matrix, *m_result;

       hmat3_t   *vvt_mul3(vectorA, vectorB, m_result)
       hvec3_t   *vectorA, *vectorB;
       hmat3_t   *m_result;

       hvec3_t   *mv_mul3(matrix, vector, v_result)
       hmat3_t   *matrix;
       *hvec3_t  *vector, *v_result;

       hvec3_t   *sv_mul3(scalar, vec, v_result)
       double    scalar;
       hvec3_t   *vector, *v_result;

       hvec3_t   *v_homo3(vector, v_result)
       hvec3_t   *vector, *v_result;

       hvec3_t   *v_norm3(vector, v_result)
       hvec3_t   *vector, *v_result;

       hvec3_t   *vv_add3(vectorA, vectorB, v_result)
       hvec3_t   *vectorA, *vectorB, *v_result;

       hvec3_t   *vv_cross3(vectorA, vectorB, v_result)
       hvec3_t   *vectorA, *vectorB, *v_result;

       hvec3_t   *vv_sub3(vectorA, vectorB, v_result)
       hvec3_t   *vectorA, *vectorB, *v_result;

       /* Elementary transformations */

       hmat2_t   *miraxis2(axis, m_result)
       b_axis    axis;
       hmat2_t   *m_result;

       hmat2_t   *mirorig2(m_result)
       hmat2_t   *m_result;

       hmat2_t   *rot2( rotation, m_result)
       double    rotation;
       hmat2_t   *m_result;

       hmat2_t   *scaorig2(scale, m_result)
       double    scale;
       hmat2_t   *m_result;

       hmat2_t   *scaxis2(scale, axis, m_result)
       double    scale;
       b_axis    axis;
       hmat2_t   *m_result;

       hmat2_t   *transl2(translation, m_result)
       hvec2_t   *translation;
       hmat2_t   *m_result;

       hmat3_t   *miraxis3(axis, m_result)
       b_axis    axis;
       hmat3_t   *m_result;

       hmat3_t   *mirorig3(m_result)
       hmat3_t   *m_result;

       hmat3_t   *mirplane3(plane, m_result)
       b_axis    plane;
       hmat3_t   *m_result;

       hmat3_t   *prjorthaxis(axis, m_result)
       b_axis    axis;
       hmat3_t   *m_result;

       hmat3_t   *prjpersaxis(axis, m_result)
       b_axis    axis;
       hmat3_t   *m_result;

       hmat3_t   *rot3( rotation, axis, m_result)
       double    rotation;
       b_axis    axis;
       hmat3_t   *m_result;

       hmat3_t   *scaorig3(scale, m_result)
       double    scale;
       hmat3_t   *m_result;

       hmat3_t   *scaplane(scale, plane, m_result)
       double    scale;
       b_axis    plane;
       hmat3_t   *m_result;

       hmat3_t   *scaxis3(scale, axis, m_result)
       double    scale;
       b_axis    axis;
       hmat3_t   *m_result;

       hmat3_t   *transl3(translation, m_result)
       hvec3_t   *translation;
       hmat3_t   *m_result;

DESCRIPTION

       Matrix and vector routines associated with 3d graphics in homogeneous coordinates, such as
       basic linear algebra and elementary transformations.

       This library is setup with a multi-level approach.
       Level1 : the data level.
       Level 2: the data initialisation level.
       Level 3: basic linear algebra level.
       Level 4: elementary transformation level.

       Level 1, the data structures, is realised as follows :
       typedef union
       {
       double a[3];
       struct
       {
                 double x, y, w;
       } s;
       } hvec2_t;

       typedef union
       {
       double a[4];
       struct
       {
                 double x, y, z, w;
       } s;
       } hvec3_t;

       typedef struct
       {
       double m[3][3];
       } hmat2_t;

       typedef struct
       {
       double m[4][4];
       } hmat3_t;

       To access the data elements of a vector or a matrix can be accessed with the macros:

       #define   v_x( vec )((vec).s.x)
       #define   v_y( vec )((vec).s.y)
       #define   v_z( vec )((vec).s.z)
       #define   v_w( vec )((vec).s.w)
       #define   v_elem( vec, i )((vec).a[(i)])
       #define   m_elem( mat, i, j )((mat).m[(i)][(j)])

       typedef enum
       {
                 X_AXIS, Y_AXIS, Z_AXIS
       } b_axis;

       The functions are as follows sorted:
       first on the level in which they belong, then on their return  value  and  then  on  their
       name.

NAMES

       The  function  names begin with an abbreviation of the type of operand, and in which order
       the operations will be carried out on that operand. Then the order of and which  operation
       will be carried out, followed by the type of coordinates. (i.e vtmv_mul3(vector, matrix) :
       first take the transpose of vector, multiply the transpose with  matrix,  this  result  is
       multiplied by the incoming vector, all coordinates are homogeneous 3d coordinates.)

USAGE

       All the "functions" may have been implemented as macro's, so you can't take the address of
       a function. It is however  guaranteed  that  arguments  of  each  function/macro  will  be
       evaluated  only  once,  except  for  the  result argument, which can be evaluated multiple
       times.

       All operations can be used in place, but overlapping data gives unspecified results.

       If the parameter v_result or m_result of a function or the parameter of an  initialisation
       function  equals  NULL,  space  for  the  parameter  will  be  dynamically allocated using
       malloc(), otherwise the parameter is assumed to hold a pointer to a memory area which  can
       be  used.  A  pointer  to  the  used  area  (which  may have been new allocated) is always
       returned.
       If an error occurred like memory could not be allocated, an  attempt  to  divide  by  zero
       occurs,  or an attempt to invert a singular matrix a general error-routine will be called,
       which has two parameters : gm_errno and gm_func.
       gm_errno is the error type which is one of  the  following  constants  :  DIV0,  NOMEM  or
       MATSING.   gm_func  is a pointer to a string which contains the name of the function where
       the error occurred.

       A pointer to the error routine is defined as follows :
       void (* gm_error)(gm_errno, gm_func);
       gm_error_t gm_errno;
       char *gm_func;

       With gm_error_t is defined as :
       typedef enum
       {
       DIV0, NOMEM, MATSING
       } gm_error_t;

       The default error handler will  abort  after  printing  a  diagnostic.  You  can  redirect
       gm_error  to  your own error handler. It is not advisable to return from the error handler
       as error recovery is not expected to take place.

       Matrices are of type hmat3_t or hmat2_t for 2d or 3d coordinates, respectively.
       Vectors are of type hvec3_t or hvec2_t.

       The elements of a vector can be accessed in two manners, the first one is by  name  of  an
       element of a structure, the second is like an array.

       A plane is described by the normal to that plane, with the assumption made that the origin
       is an element of the plane.

       rotation is assumed to be a radial.

       If a function is deallocating memory, it will check if the  incoming  pointer  is  a  NULL
       pointer.

       /* Level2 : Data initialisation */

       m_alloc2(),  v_alloc2(),  m_alloc3(),  v_alloc3()  allocate memory for a data item of type
       hmat2_t, hvec2_t, hmat3_t and hvec3_t respectively.
       m_free2(), v_free2(), m_free3(), v_free3() reclaim the storage allocated previously.
       m_cpy2(), m_cpy3() copies m_matrix into m_result.
       m_unity2(),  m_unity3()  returns  the  unity  matrix.  (2d  respectively  3d   homogeneous
       coordinates)
       v_cpy2(),  v_cpy3()  copies  v_source  into  v_result.   (2d  respectively  3d homogeneous
       coordinates)
       v_fill2(), v_fill3() fills v_result according the given values.
       v_unity2(), v_unity3() returns the unity vector with w = 1.0, the incoming basic axis axis
       = 1.0, and the other element(s) are 0.0; (2d  respectively 3d homogeneous coordinates)
       v_zero2(), v_zero3() return a vector with w = 1.0 and the other elements 0.0;
       m_cpy2(),  m_cpy3()  copies  m_source  into  m_result.   (2d  respectively  3d homogeneous
       coordinates)

       /* level3 : Basic Linear Algebra */

       m_det2(), m_det3() calculates the determinant of the incoming matrix. The  determinant  is
       calculated in cartesian rather than homogeneous coordinates.
       v_len2(), v_len3() calculates the length of the cathesian part of the homogeneous vector.
       vtmv_mul2(),  vtmv_mul3()  calculate  the  result  of the transpose of the incoming vector
       multiplied by the incoming matrix multiplied by the incoming vector  (2d  respectively  3d
       homogeneous coordinates)
       vv_inprod2(),  vv_inprod3()  calculates  the geometrical innerproduct (vector . vector) of
       vectorA and vectorB.
       m_inv2(), m_inv3() calculates the inverse of matrix.  It is an  error  if  the  matrix  in
       singular.
       m_tra2(),  m_tra3()  calculates  the  transpose  matrix.   (2d respectively 3d homogeneous
       coordinates)
       mm_add2(), mm_sub2(), mm_add3(), mm_sub3() calculates the result of matrixA + respectively
       -  matrixB.   This  operation  is unspecified in the sense of homogeneous coordinates; the
       matrices are taken in their normal, mathematial sense.
       mm_mul2(),  mm_mul3()  calculates  the  result  of  matrixA*matrixB  (2d  respectively  3d
       homogeneous coordinates)
       mtmm_mul2(),  mtmm_mul3()  calculates  the result of the transpose of the incoming matrixA
       multiplied by matrixB multiplied by matrixA (2d respectively 3d homogeneous coordinates)
       sm_mul2(),  sm_mul3()  calculates  the  result  of  scalar*matrix  (2d   respectively   3d
       homogeneous coordinates)
       mv_mul2(),   mv_mul3()   calculates  the  result  of  matrix*vector  (2d  respectively  3d
       homogeneous coordinates)
       sv_mul2(),  sv_mul3()  calculates  the  result  of  scalar*vector.   (2d  respectively  3d
       homogeneous coordinates)
       v_homo2(),  v_homo3() homogenize vector so that the w component becomes 1.0 but the length
       of the vector in homogeneous coordinates stays the same. (2d respectively  3d  homogeneous
       coordinates)
       v_norm2(),  v_norm3() normalises the incoming vector so the length of the cartesian vector
       becomes 1.0. The homogeneous length stays  the  same.   (2d  respectively  3d  homogeneous
       coordinates)
       vv_add2(), vv_sub2(), vv_add3(), vv_sub3() calculates the result of vectorA + respectively
       - vectorB.  These  operations  are  done  in  the  mathematical  sense.  Be  careful  with
       homogeneous coordinates, as not every possible input makes sense.
       vvt_mul2(),  vvt_mul3()  calculates  the  result of vectorA multiplied by the transpose of
       vectorB (2d respectively 3d homogeneous coordinates)
       vv_cross3() calculates the geometrical crossproduct ( vectorA x vectorB)  of  two  vectors
       (3d homogeneous coordinates)

       /* level4 : Elementary transformations */

       miraxis2(),   miraxis3()   calculates  the  mirror  matrix  with  respect  to  axis.   (2d
       respectively 3d homogeneous coordinates)
       mirorg2(), mirorg3() calculates the mirror matrix relative to the origin. (2d respectively
       3d homogeneous coordinates)
       mirplane3() calculates the mirror matrix relative to a plane. (3d homogeneous coordinates)
       rot2()  calculates  the  rotation  matrix  over  rotation  relative  to  the  origin.  (2d
       homogeneous coordinates)
       rot3()  calculates  the  rotation  matrix  over  rotation  along  axis.   (3d  homogeneous
       coordinates)
       scaorg2(),  scaorg3()  calculates the matrix of scaling with scale relative to the origin.
       (2d respectively 3d homogeneous coordinates)
       scaplane3() calculates the matrix of scaling with scale relative to a plane of which plane
       is the normal. (3d homogeneous coordinates)
       scaxis2(),  scaxis3()  calculates  the  matrix  of scaling with scale relative to the line
       given by axis.  (2d respectively 3d homogeneous coordinates)
       transl2(), transl3() calculates the translation matrix over translation.  (2d respectively
       3d homogeneous coordinates)
       prjorthaxis()  calculates  the orthographic projection matrix along axis.  (3d homogeneous
       coordinates)
       prjpersaxis() calculates the perspective projection with along axis The focus  is  in  the
       origin.  The  projection  plane  is  on  distance  1.0 before the camera.  (3d homogeneous
       coordinates)

CAVEATS

       Vector addition and subtraction and matrix addition and substraction are not  defined  for
       homogeneous  coordinates.   One can add and subtract a point vector and a free vector, but
       you have to normalise the point vector first.  The result of the subtraction of two  point
       vectors is a free vector.

       Calculating  the  determinant of a matrix and the length of a vector is unspecified in the
       sense of homogeneous coordinates

RETURN VALUES

       There are six types of return values:  void,  double,  *hvec3_t,  *hvec2_t,  *hmat3_t  and
       *hmat2_t.

SEE ALSO

       graphadd(3), graphmat++(3), fmatpinv(3TV), malloc(3V), Graphics and matrix routines.

NOTE

       Library file is /usr/local/lib/libgraphmat.a

AUTHOR

       Hans Gringhuis.
       Klamer Schutte

                                        15 September 1992                             GRAPHMAT(3)