Provided by: erlang-manpages_18.3-dfsg-1ubuntu3.1_all bug

NAME

       public_key - API module for public-key infrastructure.

DESCRIPTION

       This  module  provides functions to handle public-key infrastructure. It can encode/decode different file
       formats (PEM,  OpenSSH),  sign  and  verify  digital  signatures,  and  validate  certificate  paths  and
       certificate revocation lists.

PUBLIC_KEY

         *
            Public  Key  requires the Crypto and ASN1 applications, the latter as OTP R16 (hopefully the runtime
           dependency on ASN1 will be removed again in the future).

         * Supports RFC 5280  - Internet X.509 Public-Key Infrastructure Certificate and Certificate  Revocation
           List (CRL) Profile

         * Supports  PKCS-1  - RSA Cryptography Standard

         * Supports  DSS - Digital Signature Standard (DSA - Digital Signature Algorithm)

         * Supports  PKCS-3  - Diffie-Hellman Key Agreement Standard

         * Supports  PKCS-5 - Password-Based Cryptography Standard

         * Supports  PKCS-8 - Private-Key Information Syntax Standard

         * Supports  PKCS-10 - Certification Request Syntax Standard

DATA TYPES

   Note:
       All  records  used in this Reference Manual are generated from ASN.1 specifications and are documented in
       the User's Guide. See Public-key Records.

       Use the following include directive to get access to the records and constant macros described  here  and
       in the User's Guide:

        -include_lib("public_key/include/public_key.hrl").

       The following data types are used in the functions for public_key:

         oid():
           Object identifier, a tuple of integers as generated by the ASN.1 compiler.

         boolean() =:
           true | false

         string() =:
           [bytes()]

         der_encoded() =:
           binary()

         pki_asn1_type() =:
           'Certificate'

           | 'RSAPrivateKey'

           | 'RSAPublicKey'

           | 'DSAPrivateKey'

           | 'DSAPublicKey'

           | 'DHParameter'

           | 'SubjectPublicKeyInfo'

           | 'PrivateKeyInfo'

           | 'CertificationRequest'

           | 'CertificateList'

           | 'ECPrivateKey'

           | 'EcpkParameters'

         pem_entry () =:
           {pki_asn1_type(), binary(), %% DER or encrypted DER

            not_encrypted | cipher_info()}

         cipher_info() = :
           {"RC2-CBC" | "DES-CBC" | "DES-EDE3-CBC", crypto:rand_bytes(8)

           | {#'PBEParameter{}, digest_type()} | #'PBES2-params'{}}

         public_key() =:
           rsa_public_key() | dsa_public_key() | ec_public_key()

         private_key() =:
           rsa_private_key() | dsa_private_key() | ec_private_key()

         rsa_public_key() =:
           #'RSAPublicKey'{}

         rsa_private_key() =:
           #'RSAPrivateKey'{}

         dsa_public_key() =:
           {integer(), #'Dss-Parms'{}}

         dsa_private_key() =:
           #'DSAPrivateKey'{}

         ec_public_key():
           = {#'ECPoint'{}, #'EcpkParameters'{} | {namedCurve, oid()}}

         ec_private_key() =:
           #'ECPrivateKey'{}

         public_crypt_options() =:
           [{rsa_pad, rsa_padding()}]

         rsa_padding() =:
           'rsa_pkcs1_padding'

           | 'rsa_pkcs1_oaep_padding'

           | 'rsa_no_padding'

         digest_type() = :
           Union of rsa_digest_type(), dss_digest_type(), and ecdsa_digest_type().

         rsa_digest_type() = :
           'md5' | 'sha' | 'sha224' | 'sha256' | 'sha384' | 'sha512'

         dss_digest_type() = :
           'sha'

         ecdsa_digest_type() = :
           'sha'| 'sha224' | 'sha256' | 'sha384' | 'sha512'

         crl_reason() = :
           unspecified

           | keyCompromise

           | cACompromise

           | affiliationChanged

           | superseded

           | cessationOfOperation

           | certificateHold

           | privilegeWithdrawn

           | aACompromise

         issuer_name() =:
           {rdnSequence,[#'AttributeTypeAndValue'{}]}

         ssh_file() =:
           openssh_public_key

           | rfc4716_public_key

           | known_hosts

           | auth_keys

EXPORTS

       compute_key(OthersKey, MyKey)->
       compute_key(OthersKey, MyKey, Params)->

              Types:

                 OthersKey = #'ECPoint'{} | binary(), MyKey = #'ECPrivateKey'{} | binary()
                 Params = #'DHParameter'{}

              Computes shared secret.

       decrypt_private(CipherText, Key) -> binary()
       decrypt_private(CipherText, Key, Options) -> binary()

              Types:

                 CipherText = binary()
                 Key = rsa_private_key()
                 Options = public_crypt_options()

              Public-key decryption using the private key. See also crypto:private_decrypt/4

       decrypt_public(CipherText, Key) - > binary()
       decrypt_public(CipherText, Key, Options) - > binary()

              Types:

                 CipherText = binary()
                 Key = rsa_public_key()
                 Options = public_crypt_options()

              Public-key decryption using the public key. See also crypto:public_decrypt/4

       der_decode(Asn1type, Der) -> term()

              Types:

                 Asn1Type = atom()
                   ASN.1 type present in the Public Key applications ASN.1 specifications.
                 Der = der_encoded()

              Decodes a public-key ASN.1 DER encoded entity.

       der_encode(Asn1Type, Entity) -> der_encoded()

              Types:

                 Asn1Type = atom()
                   ASN.1 type present in the Public Key applications ASN.1 specifications.
                 Entity = term()
                   Erlang representation of Asn1Type

              Encodes a public-key entity with ASN.1 DER encoding.

       dh_gex_group(MinSize, SuggestedSize, MaxSize, Groups) -> {ok, {Size,Group}} | {error,Error}

              Types:

                 MinSize = positive_integer()
                 SuggestedSize = positive_integer()
                 MaxSize = positive_integer()
                 Groups = undefined | [{Size,[{G,P}]}]
                 Size = positive_integer()
                 Group = {G,P}
                 G = positive_integer()
                 P = positive_integer()

              Selects  a  group for Diffie-Hellman key exchange with the key size in the range MinSize...MaxSize
              and as close to SuggestedSize as possible. If Groups == undefined a  default  set  will  be  used,
              otherwise the group is selected from Groups.

              First  a  size,  as  close as possible to SuggestedSize, is selected. Then one group with that key
              size is randomly selected from the specified set of groups.  If  no  size  within  the  limits  of
              MinSize and MaxSize is available, {error,no_group_found} is returned.

              The  default  set  of groups is listed in lib/public_key/priv/moduli. This file may be regenerated
              like this:

                   $> cd $ERL_TOP/lib/public_key/priv/
                   $> generate
                       ---- wait until all background jobs has finished. It may take several days !
                   $> cat moduli-* > moduli
                   $> cd ..; make

       encrypt_private(PlainText, Key) -> binary()

              Types:

                 PlainText = binary()
                 Key = rsa_private_key()

              Public-key encryption using the private key. See also crypto:private_encrypt/4.

       encrypt_public(PlainText, Key) -> binary()

              Types:

                 PlainText = binary()
                 Key = rsa_public_key()

              Public-key encryption using the public key. See also crypto:public_encrypt/4.

       generate_key(Params) -> {Public::binary(), Private::binary()} | #'ECPrivateKey'{}

              Types:

                 Params = #'DHParameter'{} | {namedCurve, oid()} | #'ECParameters'{}

              Generates a new keypair.

       pem_decode(PemBin) -> [pem_entry()]

              Types:

                 PemBin = binary()
                   Example {ok, PemBin} = file:read_file("cert.pem").

              Decodes PEM binary data and returns entries as ASN.1 DER encoded entities.

       pem_encode(PemEntries) -> binary()

              Types:

                  PemEntries = [pem_entry()]

              Creates a PEM binary.

       pem_entry_decode(PemEntry) -> term()
       pem_entry_decode(PemEntry, Password) -> term()

              Types:

                 PemEntry = pem_entry()
                 Password = string()

              Decodes a PEM entry. pem_decode/1 returns a list of PEM entries. Notice that if the PEM  entry  is
              of type 'SubjectPublickeyInfo', it is further decoded to an rsa_public_key() or dsa_public_key().

       pem_entry_encode(Asn1Type, Entity) -> pem_entry()
       pem_entry_encode(Asn1Type, Entity, {CipherInfo, Password}) -> pem_entry()

              Types:

                 Asn1Type = pki_asn1_type()
                 Entity = term()
                   Erlang  representation  of  Asn1Type.  If  Asn1Type is 'SubjectPublicKeyInfo', Entity must be
                   either an rsa_public_key() or a dsa_public_key() and this function  creates  the  appropriate
                   'SubjectPublicKeyInfo' entry.
                 CipherInfo = cipher_info()
                 Password = string()

              Creates a PEM entry that can be feed to pem_encode/1.

       pkix_decode_cert(Cert, otp|plain) -> #'Certificate'{} | #'OTPCertificate'{}

              Types:

                 Cert = der_encoded()

              Decodes  an ASN.1 DER-encoded PKIX certificate. Option otp uses the customized ASN.1 specification
              OTP-PKIX.asn1 for decoding and also recursively decode most of the standard parts.

       pkix_encode(Asn1Type, Entity, otp | plain) -> der_encoded()

              Types:

                 Asn1Type = atom()
                   The ASN.1 type can be 'Certificate', 'OTPCertificate' or a subtype of either.
                 Entity = #'Certificate'{} | #'OTPCertificate'{} | a valid subtype

              DER encodes a PKIX x509 certificate or part of such a certificate. This function must be used  for
              encoding certificates or parts of certificates that are decoded/created in the otp format, whereas
              for the plain format this function directly calls der_encode/2.

       pkix_is_issuer(Cert, IssuerCert) -> boolean()

              Types:

                 Cert = der_encoded() | #'OTPCertificate'{} | #'CertificateList'{}
                 IssuerCert = der_encoded() | #'OTPCertificate'{}

              Checks if IssuerCert issued Cert.

       pkix_is_fixed_dh_cert(Cert) -> boolean()

              Types:

                 Cert = der_encoded() | #'OTPCertificate'{}

              Checks if a certificate is a fixed Diffie-Hellman certificate.

       pkix_is_self_signed(Cert) -> boolean()

              Types:

                 Cert = der_encoded() | #'OTPCertificate'{}

              Checks if a certificate is self-signed.

       pkix_issuer_id(Cert, IssuedBy) -> {ok, IssuerID} | {error, Reason}

              Types:

                 Cert = der_encoded() | #'OTPCertificate'{}
                 IssuedBy = self | other
                 IssuerID = {integer(), issuer_name()}
                   The issuer id consists of the serial number and the issuers name.
                 Reason = term()

              Returns the issuer id.

       pkix_normalize_name(Issuer) -> Normalized

              Types:

                 Issuer = issuer_name()
                 Normalized = issuer_name()

              Normalizes an issuer name so that it can be easily compared to another issuer name.

       pkix_path_validation(TrustedCert,  CertChain,  Options)  ->  {ok,  {PublicKeyInfo, PolicyTree}} | {error,
       {bad_cert, Reason}}

              Types:

                 TrustedCert = #'OTPCertificate'{} | der_encoded() | atom()
                   Normally a trusted certificate, but it can also  be  a  path-validation  error  that  can  be
                   discovered  while  constructing  the input to this function and that is to be run through the
                   verify_fun. Examples are unknown_ca and selfsigned_peer.
                 CertChain = [der_encoded()]
                   A list of DER-encoded certificates in trust order ending with the peer certificate.
                 Options = proplists:proplist()
                 PublicKeyInfo = {?'rsaEncryption' | ?'id-dsa', rsa_public_key() |  integer(),  'NULL'  |  'Dss-
                 Parms'{}}
                 PolicyTree = term()
                   At the moment this is always an empty list as policies are not currently supported.
                 Reason   =   cert_expired   |   invalid_issuer   |  invalid_signature  |  name_not_permitted  |
                 missing_basic_constraint | invalid_key_usage | {revoked, crl_reason()} | atom()

              Performs a basic path validation according to RFC 5280. However, CRL validation is done separately
              by pkix_crls_validate/3  and is to be called from the supplied verify_fun.

              Available options:

                {verify_fun, fun()}:
                  The fun must be defined as:

                fun(OtpCert :: #'OTPCertificate'{},
                    Event :: {bad_cert, Reason :: atom() | {revoked, atom()}} |
                             {extension, #'Extension'{}},
                    InitialUserState :: term()) ->
                     {valid, UserState :: term()} |
                     {valid_peer, UserState :: term()} |
                     {fail, Reason :: term()} |
                     {unknown, UserState :: term()}.

                  If the verify callback fun returns {fail, Reason}, the  verification  process  is  immediately
                  stopped.  If  the  verify callback fun returns {valid, UserState}, the verification process is
                  continued.  This  can  be  used  to  accept  specific  path   validation   errors,   such   as
                  selfsigned_peer,  as  well  as  verifying  application-specific  extensions. If called with an
                  extension unknown to the user application, the return value  {unknown,  UserState}  is  to  be
                  used.

                {max_path_length, integer()}:
                   The  max_path_length  is the maximum number of non-self-issued intermediate certificates that
                  can follow the peer certificate in a valid certification path. So, if  max_path_length  is  0,
                  the PEER must be signed by the trusted ROOT-CA directly, if it is 1, the path can be PEER, CA,
                  ROOT-CA, if it is 2, the path can be PEER, CA, CA, ROOT-CA, and so on.

              Possible reasons for a bad certificate:

                cert_expired:
                  Certificate is no longer valid as its expiration date has passed.

                invalid_issuer:
                  Certificate issuer name does not match the name of the issuer certificate in the chain.

                invalid_signature:
                  Certificate was not signed by its issuer certificate in the chain.

                name_not_permitted:
                  Invalid Subject Alternative Name extension.

                missing_basic_constraint:
                  Certificate,  required  to  have  the  basic  constraints  extension,  does  not  have a basic
                  constraints extension.

                invalid_key_usage:
                  Certificate key is used in an invalid way according to the key-usage extension.

                {revoked, crl_reason()}:
                  Certificate has been revoked.

                atom():
                  Application-specific error reason that is to be checked by the verify_fun.

       pkix_crl_issuer(CRL) -> issuer_name()

              Types:

                 CRL = der_encoded() | #'CertificateList'{}

              Returns the issuer of the CRL.

       pkix_crls_validate(OTPCertificate, DPAndCRLs, Options) -> CRLStatus()

              Types:

                 OTPCertificate = #'OTPCertificate'{}
                 DPAndCRLs = [{DP::#'DistributionPoint'{}, {DerCRL::der_encoded(), CRL::#'CertificateList'{}}}]
                 Options = proplists:proplist()
                 CRLStatus()  =  valid  |  {bad_cert,  revocation_status_undetermined}  |  {bad_cert,  {revoked,
                 crl_reason()}}

              Performs   CRL   validation.   It   is   intended   to   be   called   from   the  verify  fun  of
              pkix_path_validation/3 .

              Available options:

                {update_crl, fun()}:
                  The fun has the following type specification:

                 fun(#'DistributionPoint'{}, #'CertificateList'{}) ->
                        #'CertificateList'{}

                  The fun uses the information in the distribution point to access the latest  possible  version
                  of the CRL. If this fun is not specified, Public Key uses the default implementation:

                 fun(_DP, CRL) -> CRL end

                {issuer_fun, fun()}:
                  The fun has the following type specification:

                fun(#'DistributionPoint'{}, #'CertificateList'{},
                    {rdnSequence,[#'AttributeTypeAndValue'{}]}, term()) ->
                     {ok, #'OTPCertificate'{}, [der_encoded]}

                  The fun returns the root certificate and certificate chain that has signed the CRL.

                 fun(DP, CRL, Issuer, UserState) -> {ok, RootCert, CertChain}

       pkix_crl_verify(CRL, Cert) -> boolean()

              Types:

                 CRL = der_encoded() | #'CertificateList'{}
                 Cert = der_encoded() | #'OTPCertificate'{}

              Verify that Cert is the CRL signer.

       pkix_dist_point(Cert) -> DistPoint

              Types:

                  Cert = der_encoded() | #'OTPCertificate'{}
                  DistPoint = #'DistributionPoint'{}

              Creates  a  distribution point for CRLs issued by the same issuer as Cert. Can be used as input to
              pkix_crls_validate/3

       pkix_dist_points(Cert) -> DistPoints

              Types:

                  Cert = der_encoded() | #'OTPCertificate'{}
                  DistPoints = [#'DistributionPoint'{}]

              Extracts distribution points from the certificates extensions.

       pkix_sign(#'OTPTBSCertificate'{}, Key) -> der_encoded()

              Types:

                 Key = rsa_private_key() | dsa_private_key()

              Signs an 'OTPTBSCertificate'. Returns the corresponding DER-encoded certificate.

       pkix_sign_types(AlgorithmId) -> {DigestType, SignatureType}

              Types:

                 AlgorithmId = oid()
                   Signature OID from a certificate or a certificate revocation list.
                 DigestType = rsa_digest_type() | dss_digest_type()
                 SignatureType = rsa | dsa | ecdsa

              Translates signature algorithm OID to Erlang digest and signature types.

       pkix_verify(Cert, Key) -> boolean()

              Types:

                 Cert = der_encoded()
                 Key = rsa_public_key() | dsa_public_key() | ec_public_key()

              Verifies PKIX x.509 certificate signature.

       sign(Msg, DigestType, Key) -> binary()

              Types:

                 Msg = binary() | {digest,binary()}
                   The Msg is either the binary "plain text" data to be signed or it  is  the  hashed  value  of
                   "plain text", that is, the digest.
                 DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
                 Key = rsa_private_key() | dsa_private_key() | ec_private_key()

              Creates a digital signature.

       ssh_decode(SshBin, Type) -> [{public_key(), Attributes::list()}]

              Types:

                 SshBin = binary()
                   Example {ok, SshBin} = file:read_file("known_hosts").
                 Type = public_key | ssh_file()
                   If  Type  is  public_key  the binary can be either an RFC4716 public key or an OpenSSH public
                   key.

              Decodes an SSH file-binary. In the case of known_hosts or auth_keys, the binary can include one or
              more lines of the file. Returns a list of public keys and  their  attributes,  possible  attribute
              values depends on the file type represented by the binary.

                RFC4716 attributes - see RFC 4716.:
                  {headers, [{string(), utf8_string()}]}

                auth_key attributes - see manual page for sshd.:
                  {comment, string()}{options, [string()]}{bits, integer()} - In SSH version 1 files.

                known_host attributes - see manual page for sshd.:
                  {hostnames, [string()]}{comment, string()}{bits, integer()} - In SSH version 1 files.

       ssh_encode([{Key, Attributes}], Type) -> binary()

              Types:

                 Key = public_key()
                 Attributes = list()
                 Type = ssh_file()

              Encodes  a  list of SSH file entries (public keys and attributes) to a binary. Possible attributes
              depend on the file type, see  ssh_decode/2 .

       verify(Msg, DigestType, Signature, Key) -> boolean()

              Types:

                 Msg = binary() | {digest,binary()}
                   The Msg is either the binary "plain text" data or it is the hashed  value  of  "plain  text",
                   that is, the digest.
                 DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
                 Signature = binary()
                 Key = rsa_public_key() | dsa_public_key() | ec_public_key()

              Verifies a digital signature.

Ericsson AB                                     public_key 1.1.1                                public_key(3erl)