Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all
NAME
zhbgv.f -
SYNOPSIS
Functions/Subroutines subroutine zhbgv (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, RWORK, INFO) ZHBGV
Function/Subroutine Documentation
subroutine zhbgv (character JOBZ, character UPLO, integer N, integer KA, integer KB, complex*16, dimension( ldab, * ) AB, integer LDAB, complex*16, dimension( ldbb, * ) BB, integer LDBB, double precision, dimension( * ) W, complex*16, dimension( ldz, * ) Z, integer LDZ, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer INFO) ZHBGV Purpose: ZHBGV computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. Parameters: JOBZ JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. UPLO UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. N N is INTEGER The order of the matrices A and B. N >= 0. KA KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0. KB KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0. AB AB is COMPLEX*16 array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed. LDAB LDAB is INTEGER The leading dimension of the array AB. LDAB >= KA+1. BB BB is COMPLEX*16 array, dimension (LDBB, N) On entry, the upper or lower triangle of the Hermitian band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by ZPBSTF. LDBB LDBB is INTEGER The leading dimension of the array BB. LDBB >= KB+1. W W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. Z Z is COMPLEX*16 array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so that Z**H*B*Z = I. If JOBZ = 'N', then Z is not referenced. LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= N. WORK WORK is COMPLEX*16 array, dimension (N) RWORK RWORK is DOUBLE PRECISION array, dimension (3*N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is: <= N: the algorithm failed to converge: i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF returned INFO = i: B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: November 2015
Author
Generated automatically by Doxygen for LAPACK from the source code.