Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       zheev.f -

SYNOPSIS

   Functions/Subroutines
       subroutine zheev (JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, INFO)
            ZHEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for HE matrices

Function/Subroutine Documentation

   subroutine zheev (character JOBZ, character UPLO, integer N, complex*16, dimension( lda, * )
       A, integer LDA, double precision, dimension( * ) W, complex*16, dimension( * ) WORK,
       integer LWORK, double precision, dimension( * ) RWORK, integer INFO)
        ZHEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE
       matrices

       Purpose:

            ZHEEV computes all eigenvalues and, optionally, eigenvectors of a
            complex Hermitian matrix A.

       Parameters:
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA, N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     leading N-by-N upper triangular part of A contains the
                     upper triangular part of the matrix A.  If UPLO = 'L',
                     the leading N-by-N lower triangular part of A contains
                     the lower triangular part of the matrix A.
                     On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     orthonormal eigenvectors of the matrix A.
                     If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     or the upper triangle (if UPLO='U') of A, including the
                     diagonal, is destroyed.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           WORK

                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The length of the array WORK.  LWORK >= max(1,2*N-1).
                     For optimal efficiency, LWORK >= (NB+1)*N,
                     where NB is the blocksize for ZHETRD returned by ILAENV.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i, the algorithm failed to converge; i
                           off-diagonal elements of an intermediate tridiagonal
                           form did not converge to zero.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2011

Author

       Generated automatically by Doxygen for LAPACK from the source code.