Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       zla_hercond_c.f -

SYNOPSIS

   Functions/Subroutines
       double precision function zla_hercond_c (UPLO, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO,
           WORK, RWORK)
           ZLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for
           Hermitian indefinite matrices.

Function/Subroutine Documentation

   double precision function zla_hercond_c (character UPLO, integer N, complex*16, dimension(
       lda, * ) A, integer LDA, complex*16, dimension( ldaf, * ) AF, integer LDAF, integer,
       dimension( * ) IPIV, double precision, dimension ( * ) C, logical CAPPLY, integer INFO,
       complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK)
       ZLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for
       Hermitian indefinite matrices.

       Purpose:

               ZLA_HERCOND_C computes the infinity norm condition number of
               op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.

       Parameters:
           UPLO

                     UPLO is CHARACTER*1
                  = 'U':  Upper triangle of A is stored;
                  = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                The number of linear equations, i.e., the order of the
                matrix A.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                On entry, the N-by-N matrix A

           LDA

                     LDA is INTEGER
                The leading dimension of the array A.  LDA >= max(1,N).

           AF

                     AF is COMPLEX*16 array, dimension (LDAF,N)
                The block diagonal matrix D and the multipliers used to
                obtain the factor U or L as computed by ZHETRF.

           LDAF

                     LDAF is INTEGER
                The leading dimension of the array AF.  LDAF >= max(1,N).

           IPIV

                     IPIV is INTEGER array, dimension (N)
                Details of the interchanges and the block structure of D
                as determined by CHETRF.

           C

                     C is DOUBLE PRECISION array, dimension (N)
                The vector C in the formula op(A) * inv(diag(C)).

           CAPPLY

                     CAPPLY is LOGICAL
                If .TRUE. then access the vector C in the formula above.

           INFO

                     INFO is INTEGER
                  = 0:  Successful exit.
                i > 0:  The ith argument is invalid.

           WORK

                     WORK is COMPLEX*16 array, dimension (2*N).
                Workspace.

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (N).
                Workspace.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           September 2012

Author

       Generated automatically by Doxygen for LAPACK from the source code.