Provided by: herisvm_0.7.0-1_all
NAME
heri-eval - evaluate classification algorithm
SYNOPSIS
heri-eval [OPTIONS] dataset [-- SVM_TRAIN_OPTIONS]
DESCRIPTION
heri-eval runs training algorithm on dataset and then evaluate it using testing set, specified by option -e. Alternatively, cross-validation is run, if option -n was applied. If cross-validation is used, training and testing on different folds are run in parallel, thus utilizing available CPUs.
OPTIONS
-h, --help Display help information. -f Enable output of per-fold statistics. See -Mf. -n N N-fold cross validation mode (mandatory option). -t T T*N-fold cross validation mode (1 by default). -e testing set Sets the testing dataset. -o filename Save results from testing sets to the specified file. Format: golden_class result_class [score] -O filename Save incorrectly classified objects to the specified file. Format: #object_number: golden_class result_class [score]) -m filename Save confusion matrix to the specified file. Format: frequency : golden_class result_class -p opts Pass the specified opts to heri-stat(1) -M chars Sets the output mode where chars are: t -- output total statistics, f -- output per- fold statistics, c -- output cross-fold statistics. The default is "-M tc". -S seed Pass the specified seed to heri-split(1). -K Keep temporary directory after exiting. -D Turn on the debugging mode, implies -K.
ENVIRONMENT
SVM_TRAIN_CMD Training utility, e.g., liblinear-train (the default is svm-train). SVM_PREDICT_CMD Predicting utility, e.g., liblinear-predict (the default is svm-predict). TMPDIR Temporary directory (the default is /tmp).
HOME
<http://github.com/cheusov/herisvm>
SEE ALSO
heri-split(1) heri-stat(1) 2016-02-29 heri-eval(1)