Provided by: slurm-client_17.11.2-1build1_amd64 bug

NAME

       sbatch - Submit a batch script to Slurm.

SYNOPSIS

       sbatch [OPTIONS(0)...] [ : [OPTIONS(n)...]] script(0) [args(0)...]

       Option(s) define multiple jobs in a co-scheduled heterogeneous job.  For more details about heterogeneous
       jobs see the document
       http://slurm.schedmd.com/heterogeneous_jobs.html

DESCRIPTION

       sbatch submits a batch script to Slurm.  The batch script may be given to sbatch through a file  name  on
       the  command line, or if no file name is specified, sbatch will read in a script from standard input. The
       batch script may contain options preceded with "#SBATCH" before any executable commands in the script.

       sbatch exits immediately after the script  is  successfully  transferred  to  the  Slurm  controller  and
       assigned  a  Slurm job ID.  The batch script is not necessarily granted resources immediately, it may sit
       in the queue of pending jobs for some time before its required resources become available.

       By default both standard output and standard error are directed to a file  of  the  name  "slurm-%j.out",
       where  the  "%j" is replaced with the job allocation number. The file will be generated on the first node
       of the job allocation.  Other than the batch script itself, Slurm does no movement of user files.

       When the job allocation is finally granted for the batch script, Slurm runs a single copy  of  the  batch
       script on the first node in the set of allocated nodes.

       The  following  document describes the influence of various options on the allocation of cpus to jobs and
       tasks.
       https://slurm.schedmd.com/cpu_management.html

OPTIONS

       -a, --array=<indexes>
              Submit a job array,  multiple  jobs  to  be  executed  with  identical  parameters.   The  indexes
              specification  identifies what array index values should be used. Multiple values may be specified
              using a comma separated list and/or  a  range  of  values  with  a  "-"  separator.  For  example,
              "--array=0-15"  or  "--array=0,6,16-32".   A  step  function  can  also be specified with a suffix
              containing a colon and number. For example, "--array=0-15:4" is equivalent to  "--array=0,4,8,12".
              A  maximum  number of simultaneously running tasks from the job array may be specified using a "%"
              separator.  For example "--array=0-15%4" will limit the number  of  simultaneously  running  tasks
              from  this  job array to 4.  The minimum index value is 0.  the maximum value is one less than the
              configuration parameter MaxArraySize.  NOTE: currently, federated job arrays only run on the local
              cluster.

       -A, --account=<account>
              Charge  resources  used by this job to specified account.  The account is an arbitrary string. The
              account name may be changed after job submission using the scontrol command.

       --acctg-freq
              Define the job accounting and profiling sampling intervals.  This can  be  used  to  override  the
              JobAcctGatherFrequency  parameter in Slurm's configuration file, slurm.conf.  The supported format
              is as follows:

              --acctg-freq=<datatype>=<interval>
                          where  <datatype>=<interval>  specifies   the   task   sampling   interval   for   the
                          jobacct_gather   plugin   or   a  sampling  interval  for  a  profiling  type  by  the
                          acct_gather_profile plugin. Multiple, comma-separated <datatype>=<interval>  intervals
                          may be specified. Supported datatypes are as follows:

                          task=<interval>
                                 where   <interval>   is   the   task  sampling  interval  in  seconds  for  the
                                 jobacct_gather plugins  and  for  task  profiling  by  the  acct_gather_profile
                                 plugin.  NOTE: This frequency is used to monitor memory usage. If memory limits
                                 are enforced the highest frequency a user can request is what is configured  in
                                 the slurm.conf file.  They can not turn it off (=0) either.

                          energy=<interval>
                                 where <interval> is the sampling interval in seconds for energy profiling using
                                 the acct_gather_energy plugin

                          network=<interval>
                                 where <interval> is the sampling interval in seconds for  infiniband  profiling
                                 using the acct_gather_infiniband plugin.

                          filesystem=<interval>
                                 where  <interval>  is the sampling interval in seconds for filesystem profiling
                                 using the acct_gather_filesystem plugin.

              The default value for the task sampling interval is 30 seconds.
              The default value for all other intervals is 0.   An  interval  of  0  disables  sampling  of  the
              specified  type.   If the task sampling interval is 0, accounting information is collected only at
              job termination (reducing Slurm interference with the job).
              Smaller (non-zero) values have a greater impact upon job performance, but a value of 30 seconds is
              not likely to be noticeable for applications having less than 10,000 tasks.

       -B --extra-node-info=<sockets[:cores[:threads]]>
              Restrict  node  selection to nodes with at least the specified number of sockets, cores per socket
              and/or threads per core.  NOTE: These options do not specify the resource allocation  size.   Each
              value  specified is considered a minimum.  An asterisk (*) can be used as a placeholder indicating
              that all available resources of that type are to be utilized. Values can also be specified as min-
              max. The individual levels can also be specified in separate options if desired:
                  --sockets-per-node=<sockets>
                  --cores-per-socket=<cores>
                  --threads-per-core=<threads>
              If  task/affinity  plugin is enabled, then specifying an allocation in this manner also results in
              subsequently launched tasks being bound to threads if the -B  option  specifies  a  thread  count,
              otherwise  an  option  of  cores if a core count is specified, otherwise an option of sockets.  If
              SelectType is configured to select/cons_res, it must have a parameter of CR_Core,  CR_Core_Memory,
              CR_Socket,  or  CR_Socket_Memory  for  this option to be honored.  This option is not supported on
              BlueGene systems (select/bluegene plugin is configured).  If not specified, the scontrol show  job
              will display 'ReqS:C:T=*:*:*'. This option applies to job allocations.

       --bbf=<file_name>
              Path  of  file  containing  burst  buffer  specification.  The form of the specification is system
              dependent.  These burst buffer directives will be inserted into the submitted batch script.

       --begin=<time>
              Submit the batch script to the Slurm controller immediately, like normal, but tell the  controller
              to defer the allocation of the job until the specified time.

              Time  may  be  of the form HH:MM:SS to run a job at a specific time of day (seconds are optional).
              (If that time is already past, the next day is assumed.)  You may  also  specify  midnight,  noon,
              fika (3 PM) or teatime (4 PM) and you can have a time-of-day suffixed with AM or PM for running in
              the morning or the evening.  You can also say what day the job will be run, by specifying  a  date
              of  the  form  MMDDYY  or  MM/DD/YY  YYYY-MM-DD.  Combine date and time using the following format
              YYYY-MM-DD[THH:MM[:SS]]. You can also give times like now + count time-units, where the time-units
              can  be  seconds  (default),  minutes, hours, days, or weeks and you can tell Slurm to run the job
              today with the keyword today and to run the job tomorrow with the keyword tomorrow.  The value may
              be changed after job submission using the scontrol command.  For example:
                 --begin=16:00
                 --begin=now+1hour
                 --begin=now+60           (seconds by default)
                 --begin=2010-01-20T12:34:00

              Notes on date/time specifications:
               -  Although  the  'seconds' field of the HH:MM:SS time specification is allowed by the code, note
              that the poll time of the Slurm scheduler is not precise enough to guarantee dispatch of  the  job
              on  the  exact second.  The job will be eligible to start on the next poll following the specified
              time. The exact poll interval depends on the Slurm scheduler (e.g., 60 seconds  with  the  default
              sched/builtin).
               - If no time (HH:MM:SS) is specified, the default is (00:00:00).
               -  If  a  date is specified without a year (e.g., MM/DD) then the current year is assumed, unless
              the combination of MM/DD and HH:MM:SS has already passed for that year, in  which  case  the  next
              year is used.

       --checkpoint=<time>
              Specifies  the  interval  between  creating checkpoints of the job step.  By default, the job step
              will have no checkpoints created.  Acceptable time formats include  "minutes",  "minutes:seconds",
              "hours:minutes:seconds", "days-hours", "days-hours:minutes" and "days-hours:minutes:seconds".

       --checkpoint-dir=<directory>
              Specifies the directory into which the job or job step's checkpoint should be written (used by the
              checkpoint/blcrm and checkpoint/xlch plugins only).  The default  value  is  the  current  working
              directory.    Checkpoint   files   will   be   of   the   form   "<job_id>.ckpt"   for   jobs  and
              "<job_id>.<step_id>.ckpt" for job steps.

       --cluster-constraint=[!]<list>
              Specifies features that a federated cluster must have to have a sibling job submitted to it. Slurm
              will  attempt  to  submit  a  sibling  job  to  a  cluster if it has at least one of the specified
              features. If the "!" option is included, Slurm will attempt to submit a sibling job to  a  cluster
              that has none of the specified features.

       --comment=<string>
              An arbitrary comment enclosed in double quotes if using spaces or some special characters.

       -C, --constraint=<list>
              Nodes  can  have features assigned to them by the Slurm administrator.  Users can specify which of
              these features are required by their job using the constraint option.  Only nodes having  features
              matching  the  job  constraints  will be used to satisfy the request.  Multiple constraints may be
              specified with AND, OR, matching OR, resource counts, etc. (some operators are  not  supported  on
              all system types).  Supported constraint options include:

              Single Name
                     Only   nodes   which   have   the   specified   feature   will   be   used.   For  example,
                     --constraint="intel"

              Node Count
                     A request can specify the number of nodes needed with some feature by appending an asterisk
                     and  count  after  the  feature name.  For example "--nodes=16 --constraint=graphics*4 ..."
                     indicates that the job requires 16 nodes and that at least four of those  nodes  must  have
                     the feature "graphics."

              AND    If  only  nodes  with all of specified features will be used.  The ampersand is used for an
                     AND operator.  For example, --constraint="intel&gpu"

              OR     If only nodes with at least one of specified features will be used.  The  vertical  bar  is
                     used for an OR operator.  For example, --constraint="intel|amd"

              Matching OR
                     If  only  one of a set of possible options should be used for all allocated nodes, then use
                     the  OR  operator  and  enclose  the  options  within  square   brackets.    For   example:
                     "--constraint=[rack1|rack2|rack3|rack4]"  might  be  used to specify that all nodes must be
                     allocated on a single rack of the cluster, but any of those four racks can be used.

              Multiple Counts
                     Specific counts of multiple resources may be  specified  by  using  the  AND  operator  and
                     enclosing      the      options      within      square     brackets.      For     example:
                     "--constraint=[rack1*2&rack2*4]" might be used to specify that two nodes must be  allocated
                     from nodes with the feature of "rack1" and four nodes must be allocated from nodes with the
                     feature "rack2".

       --contiguous
              If set, then the allocated nodes must form a contiguous set.  Not honored with  the  topology/tree
              or topology/3d_torus plugins, both of which can modify the node ordering.

       --cores-per-socket=<cores>
              Restrict  node  selection  to  nodes  with at least the specified number of cores per socket.  See
              additional information under -B option above when task/affinity plugin is enabled.

       --cpu-freq =<p1[-p2[:p3]]>

              Request that job steps initiated by srun commands  inside  this  sbatch  script  be  run  at  some
              requested frequency if possible, on the CPUs selected for the step on the compute node(s).

              p1 can be  [#### | low | medium | high | highm1] which will set the frequency scaling_speed to the
              corresponding value, and set the frequency scaling_governor to UserSpace. See below for definition
              of the values.

              p1  can be [Conservative | OnDemand | Performance | PowerSave] which will set the scaling_governor
              to the corresponding value. The governor has to be in  the  list  set  by  the  slurm.conf  option
              CpuFreqGovernors.

              When  p2  is  present, p1 will be the minimum scaling frequency and p2 will be the maximum scaling
              frequency.

              p2 can be  [#### | medium | high | highm1] p2 must be greater than p1.

              p3 can be [Conservative | OnDemand | Performance | PowerSave  |  UserSpace]  which  will  set  the
              governor to the corresponding value.

              If  p3 is UserSpace, the frequency scaling_speed will be set by a power or energy aware scheduling
              strategy to a value between p1 and p2 that lets the job run within the site's power goal. The  job
              may be delayed if p1 is higher than a frequency that allows the job to run within the goal.

              If  the current frequency is < min, it will be set to min. Likewise, if the current frequency is >
              max, it will be set to max.

              Acceptable values at present include:

              ####          frequency in kilohertz

              Low           the lowest available frequency

              High          the highest available frequency

              HighM1        (high minus one) will select the next highest available frequency

              Medium        attempts to set a frequency in the middle of the available range

              Conservative  attempts to use the Conservative CPU governor

              OnDemand      attempts to use the OnDemand CPU governor (the default value)

              Performance   attempts to use the Performance CPU governor

              PowerSave     attempts to use the PowerSave CPU governor

              UserSpace     attempts to use the UserSpace CPU governor

              The following informational environment variable is set in the job
              step when --cpu-freq option is requested.
                      SLURM_CPU_FREQ_REQ

              This environment variable can also be used to supply the value for the CPU frequency request if it
              is  set  when  the 'srun' command is issued.  The --cpu-freq on the command line will override the
              environment variable value.  The form on the environment variable is the same as the command line.
              See the ENVIRONMENT VARIABLES section for a description of the SLURM_CPU_FREQ_REQ variable.

              NOTE:  This parameter is treated as a request, not a requirement.  If the job step's node does not
              support setting the CPU frequency, or the requested value is  outside  the  bounds  of  the  legal
              frequencies, an error is logged, but the job step is allowed to continue.

              NOTE:  Setting the frequency for just the CPUs of the job step implies that the tasks are confined
              to those CPUs.  If task confinement (i.e., TaskPlugin=task/affinity or TaskPlugin=task/cgroup with
              the "ConstrainCores" option) is not configured, this parameter is ignored.

              NOTE:  When  the  step  completes, the frequency and governor of each selected CPU is reset to the
              previous values.

              NOTE: When submitting jobs with  the --cpu-freq option with linuxproc  as  the  ProctrackType  can
              cause  jobs  to run too quickly before Accounting is able to poll for job information. As a result
              not all of accounting information will be present.

       -c, --cpus-per-task=<ncpus>
              Advise the Slurm controller that ensuing job steps will require ncpus  number  of  processors  per
              task.  Without this option, the controller will just try to allocate one processor per task.

              For  instance,  consider  an  application  that  has 4 tasks, each requiring 3 processors.  If our
              cluster is comprised of quad-processors nodes and we simply ask for 12 processors, the  controller
              might give us only 3 nodes.  However, by using the --cpus-per-task=3 options, the controller knows
              that each task requires 3 processors on the same node, and the controller will grant an allocation
              of 4 nodes, one for each of the 4 tasks.

       --deadline=<OPT>
              remove  the  job  if no ending is possible before this deadline (start > (deadline - time[-min])).
              Default is no deadline.  Valid time formats are:
              HH:MM[:SS] [AM|PM]
              MMDD[YY] or MM/DD[/YY] or MM.DD[.YY]
              MM/DD[/YY]-HH:MM[:SS]
              YYYY-MM-DD[THH:MM[:SS]]]

       --delay-boot=<minutes>
              Do not reboot nodes in order to satisfied this job's feature specification if  the  job  has  been
              eligible to run for less than this time period.  If the job has waited for less than the specified
              period, it will use only nodes which already have the specified  features.   The  argument  is  in
              units  of  minutes.   A  default  value  may be set by a system administrator using the delay_boot
              option of the SchedulerParameters configuration parameter in the slurm.conf  file,  otherwise  the
              default value is zero (no delay).

       -d, --dependency=<dependency_list>
              Defer  the  start  of  this  job  until  the specified dependencies have been satisfied completed.
              <dependency_list>   is    of    the    form    <type:job_id[:job_id][,type:job_id[:job_id]]>    or
              <type:job_id[:job_id][?type:job_id[:job_id]]>.   All  dependencies  must  be  satisfied if the ","
              separator is used.  Any dependency may be satisfied if the "?" separator is used.  Many  jobs  can
              share  the  same  dependency and these jobs may even belong to different  users. The  value may be
              changed after job submission using the scontrol command.  Once a job dependency fails due  to  the
              termination  state  of a preceding job, the dependent job will never be run, even if the preceding
              job is requeued and has a different termination state in a subsequent execution.

              after:job_id[:jobid...]
                     This job can begin execution after the specified jobs have begun execution.

              afterany:job_id[:jobid...]
                     This job can begin execution after the specified jobs have terminated.

              aftercorr:job_id[:jobid...]
                     A task of this job array can begin  execution  after  the  corresponding  task  ID  in  the
                     specified job has completed successfully (ran to completion with an exit code of zero).

              afternotok:job_id[:jobid...]
                     This  job can begin execution after the specified jobs have terminated in some failed state
                     (non-zero exit code, node failure, timed out, etc).

              afterok:job_id[:jobid...]
                     This job can begin execution after the specified jobs have successfully  executed  (ran  to
                     completion with an exit code of zero).

              expand:job_id
                     Resources  allocated  to  this  job should be used to expand the specified job.  The job to
                     expand must share the same QOS (Quality of Service)  and  partition.   Gang  scheduling  of
                     resources in the partition is also not supported.

              singleton
                     This  job  can begin execution after any previously launched jobs sharing the same job name
                     and user have terminated.

       -D, --chdir=<directory>
              Set the working directory of the batch script to directory before it is executed. The path can  be
              specified as full path or relative path to the directory where the command is executed.

       -e, --error=<filename pattern>
              Instruct Slurm to connect the batch script's standard error directly to the file name specified in
              the "filename pattern".  By default both standard output and standard error are  directed  to  the
              same  file.   For  job arrays, the default file name is "slurm-%A_%a.out", "%A" is replaced by the
              job ID and "%a" with the array index.  For other jobs, the default file  name  is  "slurm-%j.out",
              where  the  "%j"  is  replaced by the job ID.  See the filename pattern section below for filename
              specification options.

       --exclusive[=user|mcs]
              The job allocation can not share nodes with other running jobs  (or  just  other  users  with  the
              "=user"  option  or  with  the  "=mcs"  option).  The default shared/exclusive behavior depends on
              system configuration and the partition's OverSubscribe option  takes  precedence  over  the  job's
              option.

       --export=<environment variables [ALL] | NONE>
              Identify  which  environment  variables are propagated to the launched application, by default all
              are propagated.  Multiple environment variable  names  should  be  comma  separated.   Environment
              variable  names  may  be  specified  to  propagate  the  current value (e.g. "--export=EDITOR") or
              specific values may be exported (e.g. "--export=EDITOR=/bin/emacs").  In these  two  examples  the
              environment  propagated  will only contain the variable "EDITOR" and nothing else.  If one desires
              to add  to  the  environment  instead  of  replacing  it  have  the  argument  include  ALL  (e.g.
              "--export=EDITOR,ALL").   This will propagate "EDITOR" along with the current environment.  If one
              desires no environment variables be propagated use the argument NONE.  Regardless of this setting,
              the appropriate "SLURM_*" task environment variables are always exported to the environment.  This
              option particularly important for jobs that  are  submitted  on  one  cluster  and  execute  on  a
              different cluster (e.g. with different paths).

       --export-file=<filename | fd>
              If  a  number  between 3 and OPEN_MAX is specified as the argument to this option, a readable file
              descriptor will be assumed (STDIN and STDOUT are not supported as valid arguments).   Otherwise  a
              filename  is assumed.  Export environment variables defined in <filename> or read from <fd> to the
              job's execution environment. The content is one or more environment variable  definitions  of  the
              form NAME=value, each separated by a null character.  This allows the use of special characters in
              environment definitions.

       -F, --nodefile=<node file>
              Much like --nodelist, but the list is contained in a file of name node file.  The  node  names  of
              the  list  may  also  span multiple lines in the file.    Duplicate node names in the file will be
              ignored.  The order of the node names in the list is not important; the node names will be  sorted
              by Slurm.

       --get-user-env[=timeout][mode]
              This option will tell sbatch to retrieve the login environment variables for the user specified in
              the --uid option.  The environment variables are retrieved by running something of this sort "su -
              <username>  -c  /usr/bin/env"  and  parsing  the  output.  Be aware that any environment variables
              already set in sbatch's environment will take precedence over any  environment  variables  in  the
              user's  login  environment.  Clear any environment variables before calling sbatch that you do not
              want propagated to the spawned program.  The optional timeout value is in seconds.  Default  value
              is  8  seconds.  The optional mode value control the "su" options.  With a mode value of "S", "su"
              is executed without the "-" option.  With a mode value of "L",  "su"  is  executed  with  the  "-"
              option,  replicating  the login environment.  If mode not specified, the mode established at Slurm
              build  time   is   used.    Example   of   use   include   "--get-user-env",   "--get-user-env=10"
              "--get-user-env=10L", and "--get-user-env=S".  This option was originally created for use by Moab.

       --gid=<group>
              If  sbatch  is run as root, and the --gid option is used, submit the job with group's group access
              permissions.  group may be the group name or the numerical group ID.

       --gres=<list>
              Specifies a comma delimited list of generic consumable resources.  The format of each entry on the
              list  is  "name[[:type]:count]".   The  name is that of the consumable resource.  The count is the
              number of those resources with a default value of 1.  The specified resources will be allocated to
              the  job  on  each node.  The available generic consumable resources is configurable by the system
              administrator.  A list of available generic consumable resources will be printed and  the  command
              will  exit  if  the  option  argument  is  "help".   Examples of use include "--gres=gpu:2,mic=1",
              "--gres=gpu:kepler:2", and "--gres=help".

       --gres-flags=enforce-binding
              If set, the only CPUs available to the job will be those bound to the selected GRES (i.e. the CPUs
              identified  in the gres.conf file will be strictly enforced rather than advisory). This option may
              result in delayed initiation of a job.  For example a job requiring two GPUs and one CPU  will  be
              delayed  until both GPUs on a single socket are available rather than using GPUs bound to separate
              sockets, however the application performance may be improved due to improved communication  speed.
              Requires  the  node  to  be  configured  with  more than one socket and resource filtering will be
              performed on a per-socket basis.

       -H, --hold
              Specify the job is to be submitted in a held state (priority of zero).  A  held  job  can  now  be
              released using scontrol to reset its priority (e.g. "scontrol release <job_id>").

       -h, --help
              Display help information and exit.

       --hint=<type>
              Bind tasks according to application hints.

              compute_bound
                     Select  settings  for  compute bound applications: use all cores in each socket, one thread
                     per core.

              memory_bound
                     Select settings for memory bound applications: use only one core in each socket, one thread
                     per core.

              [no]multithread
                     [don't]  use  extra  threads  with  in-core multi-threading which can benefit communication
                     intensive applications.  Only supported with the task/affinity plugin.

              help   show this help message

       -I, --immediate
              The batch script will only be submitted to the controller if the resources necessary to grant  its
              job  allocation  are immediately available.  If the job allocation will have to wait in a queue of
              pending jobs, the batch script will not be submitted.  NOTE: There is  limited  support  for  this
              option with batch jobs.

       --ignore-pbs
              Ignore any "#PBS" options specified in the batch script.

       -i, --input=<filename pattern>
              Instruct Slurm to connect the batch script's standard input directly to the file name specified in
              the "filename pattern".

              By default, "/dev/null" is open on the batch script's standard input and both standard output  and
              standard  error are directed to a file of the name "slurm-%j.out", where the "%j" is replaced with
              the job allocation number, as described below in the filename pattern section.

       -J, --job-name=<jobname>
              Specify a name for the job allocation. The specified name will appear along with the job id number
              when  querying  running  jobs  on the system. The default is the name of the batch script, or just
              "sbatch" if the script is read on sbatch's standard input.

       --jobid=<jobid>
              Allocate resources as the specified job id.  NOTE: Only valid for users root and SlurmUser.  NOTE:
              Not valid for federated clusters.

       -k, --no-kill
              Do  not  automatically  terminate a job if one of the nodes it has been allocated fails.  The user
              will assume the responsibilities for fault-tolerance should a node fail.  When  there  is  a  node
              failure, any active job steps (usually MPI jobs) on that node will almost certainly suffer a fatal
              error, but with --no-kill, the job allocation will not be revoked so the user may launch  new  job
              steps on the remaining nodes in their allocation.

              By  default Slurm terminates the entire job allocation if any node fails in its range of allocated
              nodes.

       --kill-on-invalid-dep=<yes|no>
              If a job has an invalid dependency and it can never run this parameter tells Slurm to terminate it
              or  not. A terminated job state will be JOB_CANCELLED.  If this option is not specified the system
              wide behavior applies.  By default the job stays pending with reason  DependencyNeverSatisfied  or
              if the kill_invalid_depend is specified in slurm.conf the job is terminated.

       -L, --licenses=<license>
              Specification of licenses (or other resources available on all nodes of the cluster) which must be
              allocated to this job.  License names can be followed by a colon and count (the default  count  is
              one).  Multiple license names should be comma separated (e.g.  "--licenses=foo:4,bar").  To submit
              jobs using remote licenses, those served by the slurmdbd, specify the name of the server providing
              the licenses.  For example "--license=nastran@slurmdb:12".

       -M, --clusters=<string>
              Clusters  to  issue  commands to.  Multiple cluster names may be comma separated.  The job will be
              submitted to the one cluster providing the earliest expected  job  initiation  time.  The  default
              value  is  the  current  cluster.  A  value  of 'all' will query to run on all clusters.  Note the
              --export option to control  environment  variables  exported  between  clusters.   Note  that  the
              SlurmDBD must be up for this option to work properly.

       -m, --distribution=
              arbitrary|<block|cyclic|plane=<options>[:block|cyclic|fcyclic]>

              Specify  alternate  distribution  methods  for  remote  processes.   In  sbatch,  this  only  sets
              environment variables that will be used by subsequent srun requests.   This  option  controls  the
              assignment  of  tasks to the nodes on which resources have been allocated, and the distribution of
              those resources to tasks for binding (task affinity). The first distribution  method  (before  the
              ":")  controls the distribution of resources across nodes. The optional second distribution method
              (after the ":") controls the distribution of resources across sockets within a  node.   Note  that
              with select/cons_res, the number of cpus allocated on each socket and node may be different. Refer
              to  https://slurm.schedmd.com/mc_support.html  for  more  information  on   resource   allocation,
              assignment of tasks to nodes, and binding of tasks to CPUs.

              First distribution method:

              block  The  block  distribution method will distribute tasks to a node such that consecutive tasks
                     share a node. For example, consider an allocation of three nodes  each  with  two  cpus.  A
                     four-task  block  distribution  request will distribute those tasks to the nodes with tasks
                     one and two on the first node, task three on the second node, and task four  on  the  third
                     node.  Block distribution is the default behavior if the number of tasks exceeds the number
                     of allocated nodes.

              cyclic The cyclic distribution method will distribute tasks to a node such that consecutive  tasks
                     are distributed over consecutive nodes (in a round-robin fashion). For example, consider an
                     allocation of three nodes each with two cpus. A four-task cyclic distribution request  will
                     distribute  those tasks to the nodes with tasks one and four on the first node, task two on
                     the second node, and  task  three  on  the  third  node.   Note  that  when  SelectType  is
                     select/cons_res,  the  same  number  of  CPUs  may  not  be  allocated  on  each node. Task
                     distribution will be round-robin among all the nodes with CPUs yet to be assigned to tasks.
                     Cyclic  distribution  is  the default behavior if the number of tasks is no larger than the
                     number of allocated nodes.

              plane  The tasks are distributed in blocks of a specified size.   The  options  include  a  number
                     representing  the size of the task block.  This is followed by an optional specification of
                     the task distribution scheme within a block of tasks and between the blocks of tasks.   The
                     number  of  tasks  distributed to each node is the same as for cyclic distribution, but the
                     taskids assigned to each node depend on  the  plane  size.   For  more  details  (including
                     examples and diagrams), please see
                     https://slurm.schedmd.com/mc_support.html
                     and
                     https://slurm.schedmd.com/dist_plane.html

              arbitrary
                     The  arbitrary  method  of  distribution will allocate processes in-order as listed in file
                     designated by the environment variable SLURM_HOSTFILE.  If this variable is listed it  will
                     override  any other method specified.  If not set the method will default to block.  Inside
                     the hostfile must contain at minimum the number of hosts requested and be one per  line  or
                     comma  separated.   If  specifying a task count (-n, --ntasks=<number>), your tasks will be
                     laid out on the nodes in the order of the file.
                     NOTE: The arbitrary distribution option on a job allocation only controls the nodes  to  be
                     allocated  to  the  job and not the allocation of CPUs on those nodes. This option is meant
                     primarily to control a job step's task layout in an existing job allocation  for  the  srun
                     command.

              Second distribution method:

              block  The  block distribution method will distribute tasks to sockets such that consecutive tasks
                     share a socket.

              cyclic The cyclic distribution method will distribute tasks to sockets such that consecutive tasks
                     are  distributed over consecutive sockets (in a round-robin fashion).  Tasks requiring more
                     than one CPU will have all of those CPUs allocated on a single socket if possible.

              fcyclic
                     The fcyclic distribution method will distribute tasks  to  sockets  such  that  consecutive
                     tasks are distributed over consecutive sockets (in a round-robin fashion).  Tasks requiring
                     more than one CPU will have each CPUs allocated in a cyclic fashion across sockets.

       --mail-type=<type>
              Notify user by email when certain event types occur.  Valid type  values  are  NONE,  BEGIN,  END,
              FAIL,  REQUEUE,  ALL  (equivalent  to  BEGIN, END, FAIL, REQUEUE, and STAGE_OUT), STAGE_OUT (burst
              buffer stage out and teardown completed), TIME_LIMIT, TIME_LIMIT_90 (reached 90  percent  of  time
              limit),  TIME_LIMIT_80  (reached  80  percent of time limit), TIME_LIMIT_50 (reached 50 percent of
              time limit) and ARRAY_TASKS (send emails for  each  array  task).  Multiple  type  values  may  be
              specified  in  a  comma  separated  list.   The user to be notified is indicated with --mail-user.
              Unless the ARRAY_TASKS option is specified, mail notifications on job BEGIN, END and FAIL apply to
              a  job  array as a whole rather than generating individual email messages for each task in the job
              array.

       --mail-user=<user>
              User to receive email notification of state changes as defined by --mail-type.  The default  value
              is the submitting user.

       --mcs-label=<mcs>
              Used only when the mcs/group plugin is enabled.  This parameter is a group among the groups of the
              user.  Default value is calculated by the Plugin mcs if it's enabled.

       --mem=<size[units]>
              Specify  the  real  memory  required  per  node.   Default  units   are   megabytes   unless   the
              SchedulerParameters  configuration  parameter  includes the "default_gbytes" option for gigabytes.
              Different units can be specified using the suffix [K|M|G|T].  Default value is  DefMemPerNode  and
              the  maximum value is MaxMemPerNode. If configured, both parameters can be seen using the scontrol
              show config command.  This parameter would generally be used if whole nodes are allocated to  jobs
              (SelectType=select/linear).   Also  see  --mem-per-cpu.   --mem  and  --mem-per-cpu  are  mutually
              exclusive.

              NOTE: A memory size specification of zero is treated as a special case and grants the  job  access
              to  all  of  the  memory  on each node.  If the job is allocated multiple nodes in a heterogeneous
              cluster, the memory limit on each node will be that  of  the  node  in  the  allocation  with  the
              smallest memory size (same limit will apply to every node in the job's allocation).

              NOTE:  Enforcement  of  memory  limits currently relies upon the task/cgroup plugin or enabling of
              accounting, which samples memory  use  on  a  periodic  basis  (data  need  not  be  stored,  just
              collected).  In  both cases memory use is based upon the job's Resident Set Size (RSS). A task may
              exceed the memory limit until the next periodic accounting sample.

       --mem-per-cpu=<size[units]>
              Minimum  memory  required  per  allocated  CPU.   Default   units   are   megabytes   unless   the
              SchedulerParameters  configuration  parameter  includes the "default_gbytes" option for gigabytes.
              Default value is DefMemPerCPU and the maximum value is  MaxMemPerCPU  (see  exception  below).  If
              configured,  both parameters can be seen using the scontrol show config command.  Note that if the
              job's --mem-per-cpu value exceeds the configured MaxMemPerCPU,  then  the  user's  limit  will  be
              treated  as  a  memory  limit  per  task;  --mem-per-cpu will be reduced to a value no larger than
              MaxMemPerCPU; --cpus-per-task will be set and the value of --cpus-per-task multiplied by  the  new
              --mem-per-cpu  value  will  equal  the  original  --mem-per-cpu value specified by the user.  This
              parameter  would  generally  be  used   if   individual   processors   are   allocated   to   jobs
              (SelectType=select/cons_res).   If resources are allocated by the core, socket or whole nodes; the
              number of CPUs allocated to a job may be higher than the task count and the value of --mem-per-cpu
              should be adjusted accordingly.  Also see --mem.  --mem and --mem-per-cpu are mutually exclusive.

       --mem-bind=[{quiet,verbose},]type
              Bind  tasks  to  memory.  Used  only  when the task/affinity plugin is enabled and the NUMA memory
              functions are available.  Note that the resolution of CPU and memory binding may  differ  on  some
              architectures.  For  example,  CPU  binding  may  be  performed at the level of the cores within a
              processor while memory binding will be performed at the level of nodes, where  the  definition  of
              "nodes"  may  differ  from  system to system.  By default no memory binding is performed; any task
              using any CPU can use any memory. This option is typically used to ensure that each task is  bound
              to  the  memory  closest to it's assigned CPU. The use of any type other than "none" or "local" is
              not recommended.  If you want greater control, try running a simple test  code  with  the  options
              "--cpu-bind=verbose,none --mem-bind=verbose,none" to determine the specific configuration.

              NOTE:  To  have  Slurm always report on the selected memory binding for all commands executed in a
              shell, you can enable verbose mode by setting the SLURM_MEM_BIND  environment  variable  value  to
              "verbose".

              The following informational environment variables are set when --mem-bind is in use:

                   SLURM_MEM_BIND_LIST
                   SLURM_MEM_BIND_PREFER
                   SLURM_MEM_BIND_SORT
                   SLURM_MEM_BIND_TYPE
                   SLURM_MEM_BIND_VERBOSE

              See  the  ENVIRONMENT  VARIABLES  section  for  a  more  detailed  description  of  the individual
              SLURM_MEM_BIND* variables.

              Supported options include:

              help   show this help message

              local  Use memory local to the processor in use

              map_mem:<list>
                     Bind  by  setting  memory  masks  on  tasks  (or  ranks)  as  specified  where  <list>   is
                     <numa_id_for_task_0>,<numa_id_for_task_1>,...   The  mapping  is  specified  for a node and
                     identical mapping is applied to the tasks on every node (i.e. the lowest task  ID  on  each
                     node  is  mapped to the first ID specified in the list, etc.).  NUMA IDs are interpreted as
                     decimal values unless they are preceded  with  '0x'  in  which  case  they  interpreted  as
                     hexadecimal  values.   If  the number of tasks (or ranks) exceeds the number of elements in
                     this list, elements in the list will be reused as needed starting from the beginning of the
                     list.   To  simplify  support  for  large  task  counts, the lists may follow a map with an
                     asterisk and repetition count For example "map_mem:0x0f*4,0xf0*4".   Not  supported  unless
                     the entire node is allocated to the job.

              mask_mem:<list>
                     Bind   by  setting  memory  masks  on  tasks  (or  ranks)  as  specified  where  <list>  is
                     <numa_mask_for_task_0>,<numa_mask_for_task_1>,...  The mapping is specified for a node  and
                     identical  mapping  is  applied to the tasks on every node (i.e. the lowest task ID on each
                     node is mapped to the first mask specified in the  list,  etc.).   NUMA  masks  are  always
                     interpreted  as  hexadecimal  values.  Note that masks must be preceded with a '0x' if they
                     don't begin with [0-9] so they are seen as numerical values.  If the number  of  tasks  (or
                     ranks)  exceeds the number of elements in this list, elements in the list will be reused as
                     needed starting from the beginning of the list.  To simplify support for large task counts,
                     the   lists  may  follow  a  mask  with  an  asterisk  and  repetition  count  For  example
                     "mask_mem:0*4,1*4".  Not supported unless the entire node is allocated to the job.

              no[ne] don't bind tasks to memory (default)

              p[refer]
                     Prefer use of first specified NUMA node, but permit
                      use of other available NUMA nodes.

              q[uiet]
                     quietly bind before task runs (default)

              rank   bind by task rank (not recommended)

              sort   sort free cache pages (run zonesort on Intel KNL nodes)

              v[erbose]
                     verbosely report binding before task runs

       --mincpus=<n>
              Specify a minimum number of logical cpus/processors per node.

       -N, --nodes=<minnodes[-maxnodes]>
              Request that a minimum of minnodes nodes be allocated to this job.  A maximum node count may  also
              be specified with maxnodes.  If only one number is specified, this is used as both the minimum and
              maximum node count.  The partition's node limits supersede those of the  job.   If  a  job's  node
              limits  are outside of the range permitted for its associated partition, the job will be left in a
              PENDING state.  This permits possible execution at a later  time,  when  the  partition  limit  is
              changed.   If  a  job  node limit exceeds the number of nodes configured in the partition, the job
              will be rejected.  Note that the environment variable SLURM_JOB_NODES will be set to the count  of
              nodes  actually allocated to the job. See the ENVIRONMENT VARIABLES  section for more information.
              If -N is not specified,  the  default  behavior  is  to  allocate  enough  nodes  to  satisfy  the
              requirements of the -n and -c options.  The job will be allocated as many nodes as possible within
              the range specified and without delaying the initiation of the job.  The node count  specification
              may include a numeric value followed by a suffix of "k" (multiplies numeric value by 1,024) or "m"
              (multiplies numeric value by 1,048,576).

       -n, --ntasks=<number>
              sbatch does not launch tasks, it requests an allocation of resources and submits a  batch  script.
              This  option  advises  the Slurm controller that job steps run within the allocation will launch a
              maximum of number tasks and to provide for sufficient resources.  The  default  is  one  task  per
              node, but note that the --cpus-per-task option will change this default.

       --network=<type>
              Specify  information  pertaining  to  the switch or network.  The interpretation of type is system
              dependent.  This option is supported when running Slurm on a Cray natively.  It is used to request
              using  Network  Performance  Counters.  Only one value per request is valid.  All options are case
              in-sensitive.  In this configuration supported values include:

              system
                    Use the system-wide network performance counters. Only nodes requested will be marked in use
                    for the job allocation.  If the job does not fill up the entire system the rest of the nodes
                    are not able to be used by other jobs  using  NPC,  if  idle  their  state  will  appear  as
                    PerfCnts.  These nodes are still available for other jobs not using NPC.

              blade Use  the  blade network performance counters. Only nodes requested will be marked in use for
                    the job allocation.  If the job does not fill up the entire blade(s) allocated  to  the  job
                    those  blade(s)  are  not  able to be used by other jobs using NPC, if idle their state will
                    appear as PerfCnts.  These nodes are still available for other jobs not using NPC.

              In all cases the job allocation request must specify the
              --exclusive option.  Otherwise the request will be denied.

              Also with any of these options steps are not allowed to share blades, so  resources  would  remain
              idle  inside  an  allocation  if the step running on a blade does not take up all the nodes on the
              blade.

              The network option is also supported on systems with IBM's Parallel Environment (PE).   See  IBM's
              LoadLeveler  job  command  keyword documentation about the keyword "network" for more information.
              Multiple values may be specified in a comma separated list.  All options  are  case  in-sensitive.
              Supported values include:

              BULK_XFER[=<resources>]
                          Enable  bulk  transfer of data using Remote Direct-Memory Access (RDMA).  The optional
                          resources specification is a numeric value which can have a suffix of "k",  "K",  "m",
                          "M",  "g"  or  "G"  for  kilobytes,  megabytes  or  gigabytes.   NOTE:  The  resources
                          specification is not supported by the underlying IBM  infrastructure  as  of  Parallel
                          Environment version 2.2 and no value should be specified at this time.

              CAU=<count> Number of Collective Acceleration Units (CAU) required.  Applies only to IBM Power7-IH
                          processors.  Default value is zero.   Independent  CAU  will  be  allocated  for  each
                          programming interface (MPI, LAPI, etc.)

              DEVNAME=<name>
                          Specify the device name to use for communications (e.g. "eth0" or "mlx4_0").

              DEVTYPE=<type>
                          Specify  the device type to use for communications.  The supported values of type are:
                          "IB" (InfiniBand), "HFI" (P7 Host Fabric Interface),  "IPONLY"  (IP-Only  interfaces),
                          "HPCE"  (HPC  Ethernet), and "KMUX" (Kernel Emulation of HPCE).  The devices allocated
                          to a job must all be of the same type.  The default value depends  upon  depends  upon
                          what  hardware  is  available  and  in  order  of  preferences is IPONLY (which is not
                          considered in User Space mode), HFI, IB, HPCE, and KMUX.

              IMMED =<count>
                          Number of immediate send slots per window required.  Applies  only  to  IBM  Power7-IH
                          processors.  Default value is zero.

              INSTANCES =<count>
                          Specify  number  of network connections for each task on each network connection.  The
                          default instance count is 1.

              IPV4        Use Internet Protocol (IP) version 4 communications (default).

              IPV6        Use Internet Protocol (IP) version 6 communications.

              LAPI        Use the LAPI programming interface.

              MPI         Use the MPI programming interface.  MPI is the default interface.

              PAMI        Use the PAMI programming interface.

              SHMEM       Use the OpenSHMEM programming interface.

              SN_ALL      Use all available switch networks (default).

              SN_SINGLE   Use one available switch network.

              UPC         Use the UPC programming interface.

              US          Use User Space communications.

              Some examples of network specifications:

              Instances=2,US,MPI,SN_ALL
                          Create two user space connections for MPI communications on every switch  network  for
                          each task.

              US,MPI,Instances=3,Devtype=IB
                          Create three user space connections for MPI communications on every InfiniBand network
                          for each task.

              IPV4,LAPI,SN_Single
                          Create a IP version 4 connection for LAPI communications on  one  switch  network  for
                          each task.

              Instances=2,US,LAPI,MPI
                          Create two user space connections each for LAPI and MPI communications on every switch
                          network for each task. Note that SN_ALL is the default option so every switch  network
                          is used. Also note that Instances=2 specifies that two connections are established for
                          each protocol (LAPI and MPI) and each task.  If there are two networks and four  tasks
                          on  the node then a total of 32 connections are established (2 instances x 2 protocols
                          x 2 networks x 4 tasks).

       --nice[=adjustment]
              Run the job with an adjusted scheduling priority  within  Slurm.  With  no  adjustment  value  the
              scheduling  priority  is decreased by 100. A negative nice value increases the priority, otherwise
              decreases it. The adjustment range is +/- 2147483645. Only privileged users can specify a negative
              adjustment.

       --no-requeue
              Specifies  that  the  batch  job  should  never be requeued under any circumstances.  Setting this
              option will prevent system administrators from being able to restart the job (for example, after a
              scheduled  downtime),  recover  from  a  node  failure, or be requeued upon preemption by a higher
              priority job.  When a job is requeued, the batch script is initiated from its beginning.  Also see
              the --requeue option.  The JobRequeue configuration parameter controls the default behavior on the
              cluster.

       --ntasks-per-core=<ntasks>
              Request the maximum ntasks be invoked on each core.  Meant to be used with  the  --ntasks  option.
              Related  to  --ntasks-per-node  except  at  the  core level instead of the node level.  NOTE: This
              option is not supported unless SelectType=cons_res is configured (either directly or indirectly on
              Cray systems) along with the node's core count.

       --ntasks-per-node=<ntasks>
              Request  that  ntasks  be  invoked  on  each node.  If used with the --ntasks option, the --ntasks
              option will take precedence and the --ntasks-per-node will be treated as a maximum count of  tasks
              per  node.   Meant  to be used with the --nodes option.  This is related to --cpus-per-task=ncpus,
              but does not require knowledge of the actual number of cpus on each node.  In some  cases,  it  is
              more  convenient  to be able to request that no more than a specific number of tasks be invoked on
              each node.  Examples of this include submitting  a  hybrid  MPI/OpenMP  app  where  only  one  MPI
              "task/rank"  should  be  assigned to each node while allowing the OpenMP portion to utilize all of
              the parallelism present in the node, or submitting a single setup/cleanup/monitoring job  to  each
              node of a pre-existing allocation as one step in a larger job script.

       --ntasks-per-socket=<ntasks>
              Request  the maximum ntasks be invoked on each socket.  Meant to be used with the --ntasks option.
              Related to --ntasks-per-node except at the socket level instead of the  node  level.   NOTE:  This
              option is not supported unless SelectType=cons_res is configured (either directly or indirectly on
              Cray systems) along with the node's socket count.

       -O, --overcommit
              Overcommit resources.  When applied to job allocation, only one CPU is allocated to  the  job  per
              node  and  options  used to specify the number of tasks per node, socket, core, etc.  are ignored.
              When applied to job step allocations (the srun  command  when  executed  within  an  existing  job
              allocation),  this  option  can be used to launch more than one task per CPU.  Normally, srun will
              not allocate more than one process  per  CPU.   By  specifying  --overcommit  you  are  explicitly
              allowing  more  than  one  process  per  CPU.  However  no  more than MAX_TASKS_PER_NODE tasks are
              permitted to execute per node.  NOTE: MAX_TASKS_PER_NODE is defined in the file slurm.h and is not
              a variable, it is set at Slurm build time.

       -o, --output=<filename pattern>
              Instruct  Slurm  to connect the batch script's standard output directly to the file name specified
              in the "filename pattern".  By default both standard output and standard error are directed to the
              same  file.   For  job arrays, the default file name is "slurm-%A_%a.out", "%A" is replaced by the
              job ID and "%a" with the array index.  For other jobs, the default file  name  is  "slurm-%j.out",
              where  the  "%j"  is  replaced by the job ID.  See the filename pattern section below for filename
              specification options.

       --open-mode=append|truncate
              Open the output and error files using append or truncate mode as specified.  The default value  is
              specified by the system configuration parameter JobFileAppend.

       --parsable
              Outputs  only  the  job  id number and the cluster name if present.  The values are separated by a
              semicolon. Errors will still be displayed.

       -p, --partition=<partition_names>
              Request a specific partition for the resource allocation.  If not specified, the default  behavior
              is  to  allow  the  slurm  controller  to select the default partition as designated by the system
              administrator. If the job can use more than one partition, specify their names in a comma separate
              list  and  the one offering earliest initiation will be used with no regard given to the partition
              name ordering (although higher priority partitions will be considered first).   When  the  job  is
              initiated, the name of the partition used will be placed first in the job record partition string.

       --power=<flags>
              Comma separated list of power management plugin options.  Currently available flags include: level
              (all nodes allocated to the job should have identical power caps, may be  disabled  by  the  Slurm
              configuration option PowerParameters=job_no_level).

       --priority=<value>
              Request  a  specific  job  priority.  May be subject to configuration specific constraints.  value
              should either be a numeric value or "TOP" (for highest possible value).  Only Slurm operators  and
              administrators can set the priority of a job.

       --profile=<all|none|[energy[,|task[,|lustre[,|network]]]]>
              enables  detailed  data collection by the acct_gather_profile plugin.  Detailed data are typically
              time-series that are stored in an HDF5 file for the job.

              All       All data types are collected. (Cannot be combined with other values.)

              None      No data types are collected. This is the default.
                         (Cannot be combined with other values.)

              Energy    Energy data is collected.

              Task      Task (I/O, Memory, ...) data is collected.

              Lustre    Lustre data is collected.

              Network   Network (InfiniBand) data is collected.

       --propagate[=rlimitfR]
              Allows users to specify which of the modifiable (soft) resource limits to propagate to the compute
              nodes  and  apply  to  their  jobs.  If rlimits is not specified, then all resource limits will be
              propagated.  The following rlimit names are supported by Slurm (although some options may  not  be
              supported on some systems):

              ALL       All limits listed below

              AS        The maximum address space for a process

              CORE      The maximum size of core file

              CPU       The maximum amount of CPU time

              DATA      The maximum size of a process's data segment

              FSIZE     The  maximum  size  of  files created. Note that if the user sets FSIZE to less than the
                        current size of the slurmd.log, job launches will fail with a 'File size limit exceeded'
                        error.

              MEMLOCK   The maximum size that may be locked into memory

              NOFILE    The maximum number of open files

              NPROC     The maximum number of processes available

              RSS       The maximum resident set size

              STACK     The maximum stack size

       -q, --qos=<qos>
              Request a quality of service for the job.  QOS values can be defined for each user/cluster/account
              association in the Slurm database.  Users will be limited to their association's  defined  set  of
              qos's  when  the  Slurm  configuration parameter, AccountingStorageEnforce, includes "qos" in it's
              definition.

       -Q, --quiet
              Suppress informational messages from sbatch. Errors will still be displayed.

       --reboot
              Force the allocated nodes to reboot before starting the job.  This is  only  supported  with  some
              system configurations and will otherwise be silently ignored.

       --requeue
              Specifies that the batch job should eligible to being requeue.  The job may be requeued explicitly
              by a system administrator, after node failure, or upon preemption by a higher priority job.   When
              a  job  is  requeued, the batch script is initiated from its beginning.  Also see the --no-requeue
              option.  The JobRequeue configuration parameter controls the default behavior on the cluster.

       --reservation=<name>
              Allocate resources for the job from the named reservation.

              --share The --share option has been replaced by the --oversubscribe option described below.

       -s, --oversubscribe
              The job allocation can over-subscribe resources with other running  jobs.   The  resources  to  be
              over-subscribed  can  be  nodes, sockets, cores, and/or hyperthreads depending upon configuration.
              The  default  over-subscribe  behavior  depends  on  system  configuration  and  the   partition's
              OverSubscribe  option  takes  precedence  over  the  job's  option.  This option may result in the
              allocation being granted sooner than if the --oversubscribe option was not set  and  allow  higher
              system  utilization,  but  application  performance  will  likely  suffer  due  to competition for
              resources.  Also see the --exclusive option.

       -S, --core-spec=<num>
              Count of specialized cores per node reserved by the job for system operations and not used by  the
              application.  The  application will not use these cores, but will be charged for their allocation.
              Default value is dependent upon the node's configured CoreSpecCount value.  If a value of zero  is
              designated  and the Slurm configuration option AllowSpecResourcesUsage is enabled, the job will be
              allowed to override CoreSpecCount and use the specialized resources  on  nodes  it  is  allocated.
              This option can not be used with the --thread-spec option.

       --signal=[B:]<sig_num>[@<sig_time>]
              When  a  job  is  within sig_time seconds of its end time, send it the signal sig_num.  Due to the
              resolution of event handling by Slurm, the signal may be  sent  up  to  60  seconds  earlier  than
              specified.   sig_num  may  either be a signal number or name (e.g. "10" or "USR1").  sig_time must
              have an integer value between 0 and 65535.  By default, no signal is sent  before  the  job's  end
              time.   If  a sig_num is specified without any sig_time, the default time will be 60 seconds.  Use
              the "B:" option to signal only the batch shell, none of the other processes will be  signaled.  By
              default all job steps will be signaled, but not the batch shell itself.

       --sockets-per-node=<sockets>
              Restrict  node  selection  to nodes with at least the specified number of sockets.  See additional
              information under -B option above when task/affinity plugin is enabled.

       --spread-job
              Spread the job allocation over as many nodes as possible and attempt to  evenly  distribute  tasks
              across the allocated nodes.  This option disables the topology/tree plugin.

       --switches=<count>[@<max-time>]
              When  a  tree  topology  is  used,  this defines the maximum count of switches desired for the job
              allocation and optionally the maximum time to wait for that number of switches. If Slurm finds  an
              allocation  containing  more  switches  than the count specified, the job remains pending until it
              either finds an allocation with desired switch count or the time limit expires.  It  there  is  no
              switch  count  limit,  there  is  no  delay  in starting the job.  Acceptable time formats include
              "minutes",  "minutes:seconds",  "hours:minutes:seconds",  "days-hours",  "days-hours:minutes"  and
              "days-hours:minutes:seconds".   The  job's  maximum  time  delay  may  be  limited  by  the system
              administrator using the  SchedulerParameters  configuration  parameter  with  the  max_switch_wait
              parameter option.  On a dragonfly network the only switch count supported is 1 since communication
              performance will be highest when a job is allocate resources on one leaf switch  or  more  than  2
              leaf switches.  The default max-time is the max_switch_wait SchedulerParameters.

       -t, --time=<time>
              Set  a limit on the total run time of the job allocation.  If the requested time limit exceeds the
              partition's time limit, the job will be left in a  PENDING  state  (possibly  indefinitely).   The
              default  time  limit  is the partition's default time limit.  When the time limit is reached, each
              task in each job step is sent SIGTERM followed  by  SIGKILL.   The  interval  between  signals  is
              specified  by  the  Slurm  configuration  parameter  KillWait.   The  OverTimeLimit  configuration
              parameter may permit the job to run longer than scheduled.  Time  resolution  is  one  minute  and
              second values are rounded up to the next minute.

              A  time  limit  of  zero  requests that no time limit be imposed.  Acceptable time formats include
              "minutes",  "minutes:seconds",  "hours:minutes:seconds",  "days-hours",  "days-hours:minutes"  and
              "days-hours:minutes:seconds".

       --tasks-per-node=<n>
              Specify the number of tasks to be launched per node.  Equivalent to --ntasks-per-node.

       --test-only
              Validate the batch script and return an estimate of when a job would be scheduled to run given the
              current job queue and all the other arguments specifying the job requirements. No job is  actually
              submitted.

       --thread-spec=<num>
              Count  of  specialized  threads per node reserved by the job for system operations and not used by
              the application. The application will not use  these  threads,  but  will  be  charged  for  their
              allocation.  This option can not be used with the --core-spec option.

       --threads-per-core=<threads>
              Restrict  node  selection  to nodes with at least the specified number of threads per core.  NOTE:
              "Threads" refers to the number of processing  units  on  each  core  rather  than  the  number  of
              application  tasks to be launched per core.  See additional information under -B option above when
              task/affinity plugin is enabled.

       --time-min=<time>
              Set a minimum time limit on the job allocation.  If specified, the job may have it's --time  limit
              lowered to a value no lower than --time-min if doing so permits the job to begin execution earlier
              than otherwise possible.  The job's time limit will not be changed  after  the  job  is  allocated
              resources.   This  is performed by a backfill scheduling algorithm to allocate resources otherwise
              reserved for higher priority jobs.  Acceptable time formats include "minutes",  "minutes:seconds",
              "hours:minutes:seconds", "days-hours", "days-hours:minutes" and "days-hours:minutes:seconds".

       --tmp=<size[units]>
              Specify a minimum amount of temporary disk space per node.  Default units are megabytes unless the
              SchedulerParameters configuration parameter includes the "default_gbytes"  option  for  gigabytes.
              Different units can be specified using the suffix [K|M|G|T].

       -u, --usage
              Display brief help message and exit.

       --uid=<user>
              Attempt  to  submit  and/or run a job as user instead of the invoking user id. The invoking user's
              credentials will be used to check access permissions for the target partition. User root  may  use
              this  option  to  run  jobs  as a normal user in a RootOnly partition for example. If run as root,
              sbatch will drop its permissions to the uid specified after node allocation  is  successful.  user
              may be the user name or numerical user ID.

       --use-min-nodes
              If a range of node counts is given, prefer the smaller count.

       -V, --version
              Display version information and exit.

       -v, --verbose
              Increase  the  verbosity  of sbatch's informational messages.  Multiple -v's will further increase
              sbatch's verbosity.  By default only errors will be displayed.

       -w, --nodelist=<node name list>
              Request a specific list of hosts.  The job will contain all of these hosts and possibly additional
              hosts  as needed to satisfy resource requirements.  The list may be specified as a comma-separated
              list of hosts, a range of hosts (host[1-5,7,...] for example), or a filename.  The host list  will
              be  assumed  to  be  a  filename if it contains a "/" character.  If you specify a minimum node or
              processor count larger than can be satisfied by the supplied host list, additional resources  will
              be  allocated  on  other  nodes as needed.  Duplicate node names in the list will be ignored.  The
              order of the node names in the list is not important; the node names will be sorted by Slurm.

       -W, --wait
              Do not exit until the submitted job terminates.  The exit code of the sbatch command will  be  the
              same  as  the  exit code of the submitted job. If the job terminated due to a signal rather than a
              normal exit, the exit code will be set to 1.  In the case of a job array, the exit  code  recorded
              will be the highest value for any task in the job array.

       --wait-all-nodes=<value>
              Controls  when  the  execution  of the command begins.  By default the job will begin execution as
              soon as the allocation is made.

              0    Begin execution as soon as allocation can be made.  Do not wait for all nodes to be ready for
                   use (i.e. booted).

              1    Do not begin execution until all nodes are ready for use.

       --wckey=<wckey>
              Specify  wckey  to  be  used with job.  If TrackWCKey=no (default) in the slurm.conf this value is
              ignored.

       --wrap=<command string>
              Sbatch will wrap the specified command string in a simple  "sh"  shell  script,  and  submit  that
              script  to  the  slurm  controller.   When  --wrap is used, a script name and arguments may not be
              specified on the command line; instead the sbatch-generated wrapper script is used.

       -x, --exclude=<node name list>
              Explicitly exclude certain nodes from the resources granted to the job.

       The following options support Blue Gene systems, but may be applicable to other systems as well.

       --blrts-image=<path>
              Path to Blue GeneL Run Time Supervisor, or blrts, image for bluegene block.   BGL  only.   Default
              from blugene.conf if not set.

       --cnload-image=<path>
              Path to compute node image for bluegene block.  BGP only.  Default from blugene.conf if not set.

       --conn-type=<type>
              Require  the  block  connection type to be of a certain type.  On Blue Gene the acceptable of type
              are MESH, TORUS and NAV.  If NAV, or  if  not  set,  then  Slurm  will  try  to  fit  a  what  the
              DefaultConnType is set to in the bluegene.conf if that isn't set the default is TORUS.  You should
              not normally set this option.  If running on a BGP system and wanting to run in HTC mode (only for
              1  midplane  and  below).  You can use HTC_S for SMP, HTC_D for Dual, HTC_V for virtual node mode,
              and HTC_L for Linux mode.  For systems that allow a different connection type  per  dimension  you
              can  supply  a  comma  separated list of connection types may be specified, one for each dimension
              (i.e. M,T,T,T will give you a torus connection is all dimensions expect the first).

       -g, --geometry=<XxYxZ> | <AxXxYxZ>
              Specify the geometry requirements for the job. On BlueGene/L  and  BlueGene/P  systems  there  are
              three  numbers  giving  dimensions in the X, Y and Z directions, while on BlueGene/Q systems there
              are four numbers giving dimensions in the A, X, Y and Z directions and can not be used to allocate
              sub-blocks.   For  example "--geometry=1x2x3x4", specifies a block of nodes having 1 x 2 x 3 x 4 =
              24 nodes (actually midplanes on BlueGene).

       --ioload-image=<path>
              Path to io image for bluegene block.  BGP only.  Default from blugene.conf if not set.

       --linux-image=<path>
              Path to linux image for bluegene block.  BGL only.  Default from blugene.conf if not set.

       --mloader-image=<path>
              Path to mloader image for bluegene block.  Default from blugene.conf if not set.

       -R, --no-rotate
              Disables rotation of the job's requested geometry in  order  to  fit  an  appropriate  block.   By
              default the specified geometry can rotate in three dimensions.

       --ramdisk-image=<path>
              Path to ramdisk image for bluegene block.  BGL only.  Default from blugene.conf if not set.

filename pattern

       sbatch allows for a filename pattern to contain one or more replacement symbols, which are a percent sign
       "%" followed by a letter (e.g. %j).

       \\     Do not process any of the replacement symbols.

       %%     The character "%".

       %A     Job array's master job allocation number.

       %a     Job array ID (index) number.

       %J     jobid.stepid of the running job. (e.g. "128.0")

       %j     jobid of the running job.

       %N     short hostname. This will create a separate IO file per node.

       %n     Node identifier relative to current job (e.g. "0" is the first node of the running job) This  will
              create a separate IO file per node.

       %s     stepid of the running job.

       %t     task identifier (rank) relative to current job. This will create a separate IO file per task.

       %u     User name.

       %x     Job name.

       A  number placed between the percent character and format specifier may be used to zero-pad the result in
       the IO filename. This number is ignored if the format specifier corresponds to  non-numeric data (%N  for
       example).

       Some examples of how the format string may be used for a 4 task job step with a Job ID of 128 and step id
       of 0 are included below:

       job%J.out      job128.0.out

       job%4j.out     job0128.out

       job%j-%2t.out  job128-00.out, job128-01.out, ...

INPUT ENVIRONMENT VARIABLES

       Upon startup, sbatch will read and handle the options set in the following environment  variables.   Note
       that environment variables will override any options set in a batch script, and command line options will
       override any environment variables.

       SBATCH_ACCOUNT        Same as -A, --account

       SBATCH_ACCTG_FREQ     Same as --acctg-freq

       SBATCH_ARRAY_INX      Same as -a, --array

       SBATCH_BLRTS_IMAGE    Same as --blrts-image

       SBATCH_CHECKPOINT     Same as --checkpoint

       SBATCH_CHECKPOINT_DIR Same as --checkpoint-dir

       SBATCH_CLUSTERS or SLURM_CLUSTERS
                             Same as --clusters

       SBATCH_CNLOAD_IMAGE   Same as --cnload-image

       SBATCH_CONN_TYPE      Same as --conn-type

       SBATCH_CONSTRAINT     Same as -C, --constraint

       SBATCH_CORE_SPEC      Same as --core-spec

       SBATCH_DEBUG          Same as -v, --verbose

       SBATCH_DELAY_BOOT     Same as --delay-boot

       SBATCH_DISTRIBUTION   Same as -m, --distribution

       SBATCH_EXCLUSIVE      Same as --exclusive

       SBATCH_EXPORT         Same as --export

       SBATCH_GEOMETRY       Same as -g, --geometry

       SBATCH_GET_USER_ENV   Same as --get-user-env

       SBATCH_GRES_FLAGS     Same as --gres-flags

       SBATCH_HINT or SLURM_HINT
                             Same as --hint

       SBATCH_IGNORE_PBS     Same as --ignore-pbs

       SBATCH_IMMEDIATE      Same as -I, --immediate

       SBATCH_IOLOAD_IMAGE   Same as --ioload-image

       SBATCH_JOBID          Same as --jobid

       SBATCH_JOB_NAME       Same as -J, --job-name

       SBATCH_LINUX_IMAGE    Same as --linux-image

       SBATCH_MEM_BIND       Same as --mem-bind

       SBATCH_MLOADER_IMAGE  Same as --mloader-image

       SBATCH_NETWORK        Same as --network

       SBATCH_NO_REQUEUE     Same as --no-requeue

       SBATCH_NO_ROTATE      Same as -R, --no-rotate

       SBATCH_OPEN_MODE      Same as --open-mode

       SBATCH_OVERCOMMIT     Same as -O, --overcommit

       SBATCH_PARTITION      Same as -p, --partition

       SBATCH_POWER          Same as --power

       SBATCH_PROFILE        Same as --profile

       SBATCH_QOS            Same as --qos

       SBATCH_RAMDISK_IMAGE  Same as --ramdisk-image

       SBATCH_RESERVATION    Same as --reservation

       SBATCH_REQ_SWITCH     When a tree topology is used, this defines the maximum count  of  switches  desired
                             for  the  job allocation and optionally the maximum time to wait for that number of
                             switches. See --switches

       SBATCH_REQUEUE        Same as --requeue

       SBATCH_SIGNAL         Same as --signal

       SBATCH_SPREAD_JOB     Same as --spread-job

       SBATCH_THREAD_SPEC    Same as --thread-spec

       SBATCH_TIMELIMIT      Same as -t, --time

       SBATCH_USE_MIN_NODES  Same as --use-min-nodes

       SBATCH_WAIT           Same as -W, --wait

       SBATCH_WAIT_ALL_NODES Same as --wait-all-nodes

       SBATCH_WAIT4SWITCH    Max time waiting for requested switches. See --switches

       SBATCH_WCKEY          Same as --wckey

       SLURM_CONF            The location of the Slurm configuration file.

       SLURM_EXIT_ERROR      Specifies the exit code generated when a Slurm error occurs (e.g. invalid options).
                             This  can  be  used  by a script to distinguish application exit codes from various
                             Slurm error conditions.

       SLURM_STEP_KILLED_MSG_NODE_ID=ID
                             If set, only the specified node will log when the job  or  step  are  killed  by  a
                             signal.

OUTPUT ENVIRONMENT VARIABLES

       The Slurm controller will set the following variables in the environment of the batch script.

       BASIL_RESERVATION_ID
              The reservation ID on Cray systems running ALPS/BASIL only.

       MPIRUN_NOALLOCATE
              Do not allocate a block on Blue Gene L/P systems only.

       MPIRUN_NOFREE
              Do not free a block on Blue Gene L/P systems only.

       MPIRUN_PARTITION
              The block name on Blue Gene systems only.

       SBATCH_MEM_BIND
              Set to value of the --mem-bind option.

       SBATCH_MEM_BIND_LIST
              Set to bit mask used for memory binding.

       SBATCH_MEM_BIND_PREFER
              Set to "prefer" if the --mem-bind option includes the prefer option.

       SBATCH_MEM_BIND_TYPE
              Set  to the memory binding type specified with the --mem-bind option.  Possible values are "none",
              "rank", "map_map", "mask_mem" and "local".

       SBATCH_MEM_BIND_VERBOSE
              Set to "verbose" if the --mem-bind option includes the verbose option.  Set to "quiet" otherwise.

       SLURM_*_PACK_GROUP_#
              For a heterogenous  job  allocation,  the  environment  variables  are  set  separately  for  each
              component.

       SLURM_ARRAY_TASK_COUNT
              Total number of tasks in a job array.

       SLURM_ARRAY_TASK_ID
              Job array ID (index) number.

       SLURM_ARRAY_TASK_MAX
              Job array's maximum ID (index) number.

       SLURM_ARRAY_TASK_MIN
              Job array's minimum ID (index) number.

       SLURM_ARRAY_TASK_STEP
              Job array's index step size.

       SLURM_ARRAY_JOB_ID
              Job array's master job ID number.

       SLURM_CHECKPOINT_IMAGE_DIR
              Directory into which checkpoint images should  be written if specified on the execute line.

       SLURM_CLUSTER_NAME
              Name of the cluster on which the job is executing.

       SLURM_CPUS_ON_NODE
              Number of CPUS on the allocated node.

       SLURM_CPUS_PER_TASK
              Number of cpus requested per task.  Only set if the --cpus-per-task option is specified.

       SLURM_DISTRIBUTION
              Same as -m, --distribution

       SLURM_GTIDS
              Global task IDs running on this node.  Zero  origin and comma separated.

       SLURM_JOB_ACCOUNT
              Account name associated of the job allocation.

       SLURM_JOB_ID (and SLURM_JOBID for backwards compatibility)
              The ID of the job allocation.

       SLURM_JOB_CPUS_PER_NODE
              Count  of  processors  available to the job on this node.  Note the select/linear plugin allocates
              entire nodes to jobs, so  the  value  indicates  the  total  count  of  CPUs  on  the  node.   The
              select/cons_res  plugin  allocates  individual  processors  to  jobs, so this number indicates the
              number of processors on this node allocated to the job.

       SLURM_JOB_DEPENDENCY
              Set to value of the --dependency option.

       SLURM_JOB_NAME
              Name of the job.

       SLURM_JOB_NODELIST (and SLURM_NODELIST for backwards compatibility)
              List of nodes allocated to the job.

       SLURM_JOB_NUM_NODES (and SLURM_NNODES for backwards compatibility)
              Total number of nodes in the job's resource allocation.

       SLURM_JOB_PARTITION
              Name of the partition in which the job is running.

       SLURM_JOB_QOS
              Quality Of Service (QOS) of the job allocation.

       SLURM_JOB_RESERVATION
              Advanced reservation containing the job allocation, if any.

       SLURM_LOCALID
              Node local task ID for the process within a job.

       SLURM_MEM_PER_CPU
              Same as --mem-per-cpu

       SLURM_MEM_PER_NODE
              Same as --mem

       SLURM_NODE_ALIASES
              Sets of node name, communication address and hostname for nodes allocated  to  the  job  from  the
              cloud.  Each  element  in the set if colon separated and each set is comma separated. For example:
              SLURM_NODE_ALIASES=ec0:1.2.3.4:foo,ec1:1.2.3.5:bar

       SLURM_NODEID
              ID of the nodes allocated.

       SLURM_NTASKS (and SLURM_NPROCS for backwards compatibility)
              Same as -n, --ntasks

       SLURM_NTASKS_PER_CORE
              Number of tasks requested per core.  Only set if the --ntasks-per-core option is specified.

       SLURM_NTASKS_PER_NODE
              Number of tasks requested per node.  Only set if the --ntasks-per-node option is specified.

       SLURM_NTASKS_PER_SOCKET
              Number of tasks requested per socket.  Only set if the --ntasks-per-socket option is specified.

       SLURM_PACK_SIZE
              Set to count of components in heterogeneous job.

       SLURM_PRIO_PROCESS
              The  scheduling priority (nice value) at the time of job submission.  This  value  is   propagated
              to the spawned processes.

       SLURM_PROCID
              The MPI rank (or relative process ID) of the current process

       SLURM_PROFILE
              Same as --profile

       SLURM_RESTART_COUNT
              If  the job has been restarted due to system failure or has been explicitly requeued, this will be
              sent to the number of times the job has been restarted.

       SLURM_SUBMIT_DIR
              The directory from which sbatch was invoked.

       SLURM_SUBMIT_HOST
              The hostname of the computer from which sbatch was invoked.

       SLURM_TASKS_PER_NODE
              Number of tasks to be initiated on each node. Values are comma separated and in the same order  as
              SLURM_JOB_NODELIST.   If two or more consecutive nodes are to have the same task count, that count
              is   followed   by   "(x#)"   where    "#"    is    the    repetition    count.    For    example,
              "SLURM_TASKS_PER_NODE=2(x3),1"  indicates that the first three nodes will each execute three tasks
              and the fourth node will execute one task.

       SLURM_TASK_PID
              The process ID of the task being started.

       SLURM_TOPOLOGY_ADDR
              This is set only if the  system  has  the  topology/tree  plugin configured.   The value  will  be
              set to the names network switches which  may be  involved  in  the  job's  communications from the
              system's top level switch down to the leaf switch and  ending  with node name. A period is used to
              separate each hardware component name.

       SLURM_TOPOLOGY_ADDR_PATTERN
              This is set only if the  system  has  the  topology/tree  plugin configured. The value will be set
              component  types  listed   in SLURM_TOPOLOGY_ADDR.   Each  component will be identified as  either
              "switch" or "node".  A period is  used  to separate each hardware component type.

       SLURMD_NODENAME
              Name of the node running the job script.

EXAMPLES

       Specify a batch script by filename on the command line.  The batch script specifies a 1 minute time limit
       for the job.

              $ cat myscript
              #!/bin/sh
              #SBATCH --time=1
              srun hostname |sort

              $ sbatch -N4 myscript
              salloc: Granted job allocation 65537

              $ cat slurm-65537.out
              host1
              host2
              host3
              host4

       Pass a batch script to sbatch on standard input:

              $ sbatch -N4 <<EOF
              > #!/bin/sh
              > srun hostname |sort
              > EOF
              sbatch: Submitted batch job 65541

              $ cat slurm-65541.out
              host1
              host2
              host3
              host4

       To create a heterogeneous job with 3 components, each allocating a unique set of nodes:

              sbatch -w node[2-3] : -w node4 : -w node[5-7] work.bash
              Submitted batch job 34987

COPYING

       Copyright (C) 2006-2007 The Regents of the University of  California.   Produced  at  Lawrence  Livermore
       National Laboratory (cf, DISCLAIMER).
       Copyright (C) 2008-2010 Lawrence Livermore National Security.
       Copyright (C) 2010-2017 SchedMD LLC.

       This    file    is    part    of    Slurm,   a   resource   management   program.    For   details,   see
       <https://slurm.schedmd.com/>.

       Slurm is free software; you can redistribute it and/or modify it under  the  terms  of  the  GNU  General
       Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
       option) any later version.

       Slurm is distributed in the hope that it will be useful, but  WITHOUT  ANY  WARRANTY;  without  even  the
       implied  warranty  of  MERCHANTABILITY  or  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
       License for more details.

SEE ALSO

       sinfo(1), sattach(1), salloc(1), squeue(1),  scancel(1),  scontrol(1),  slurm.conf(5),  sched_setaffinity
       (2), numa (3)