Provided by: eperl_2.2.14-22build3_amd64 bug

NAME

       ePerl - Embedded Perl 5 Language

VERSION

       @V@

SYNOPSIS

       eperl [-d name=value] [-D name=value] [-B begin_delimiter] [-E end_delimiter] [-i] [-m mode] [-o
       outputfile] [-k] [-I directory] [-P] [-C] [-L] [-x] [-T] [-w] [-c] [inputfile]

       eperl [-r] [-l] [-v] [-V]

DESCRIPTION

   Abstract
       ePerl interprets an ASCII file bristled with Perl 5 program statements by evaluating the Perl 5 code
       while passing through the plain ASCII data. It can operate in various ways: As a stand-alone Unix filter
       or integrated Perl 5 module for general file generation tasks and as a powerful Webserver scripting
       language for dynamic HTML page programming.

   Introduction
       The eperl program is the Embedded Perl 5 Language interpreter. This really is a full-featured Perl 5
       interpreter, but with a different calling environment and source file layout than the default Perl
       interpreter (usually the executable perl or perl5 on most systems).  It is designed for general ASCII
       file generation with the philosophy of embedding the Perl 5 program code into the ASCII data instead of
       the usual way where you embed the ASCII data into a Perl 5 program (usually by quoting the data and using
       them via "print" statements).  So, instead of writing a plain Perl script like

         #!/path/to/perl
         print "foo bar\n";
         print "baz quux\n";
         for ($i = 0; $i < 10; $i++) { print "foo #${i}\n"; }
         print "foo bar\n";
         print "baz quux\n";

       you can write it now as an ePerl script:

         #!/path/to/eperl
         foo bar
         baz quux
         <: for ($i = 0; $i < 10; $i++) { print "foo #${i}\n"; } :>
         foo bar
         baz quux

       Although the ePerl variant has a different source file layout, the semantic is the same, i.e. both
       scripts create exactly the same resulting data on "STDOUT".

   Intention
       ePerl is simply a glue code which combines the programming power of the Perl 5 interpreter library with a
       tricky embedding technique.  The embedding trick is this: it converts the source file into a valid Perl
       script which then gets entirely evaluated by only one internal instance of the Perl 5 interpreter.  To
       achieve this, ePerl translates all plain code into (escaped) Perl 5 strings placed into print constructs
       while passing through all embedded native Perl 5 code. As you can see, ePerl itself does exactly the same
       internally, a silly programmer had to do when writing a plain Perl generation script.

       Due to the nature of such bristled code, ePerl is really the better attempt when the generated ASCII data
       contains really more static as dynamic data. Or in other words: Use ePerl if you want to keep the most of
       the generated ASCII data in plain format while just programming some bristled stuff. Do not use it when
       generating pure dynamic data. There it brings no advantage to the ordinary program code of a plain Perl
       script. So, the static part should be at least 60% or the advantage becomes a disadvantage.

       ePerl in its origin was actually designed for an extreme situation: as a webserver scripting-language for
       on-the-fly HTML page generation. Here you have the typical case that usually 90% of the data consists of
       pure static HTML tags and plain ASCII while just the remaining 10% are programming constructs which
       dynamically generate more markup code. This is the reason why ePerl beside its standard Unix filtering
       runtime-mode also supports the CGI/1.1 and NPH-CGI/1.1 interfaces.

   Embedded Perl Syntax
       Practically you can put any valid Perl constructs inside the ePerl blocks the used Perl 5 interpreter
       library can evaluate. But there are some important points you should always remember and never forget
       when using ePerl:

       1. Delimiters are always discarded.
           Trivially to say, but should be mentioned at least once. The ePerl block delimiters are always
           discarded and are only necessary for ePerl to recognize the embedded Perl constructs. They are never
           passed to the final output.

       2. Generated content has to go to "STDOUT".
           Although you can define subroutines, calculate some data, etc.  inside ePerl blocks only data which
           is explicitly written to the "STDOUT" filehandle is expanded. In other words: When an ePerl block
           does not generate content on "STDOUT", it is entirely replaced by an empty string in the final
           output.  But when content is generated it is put at the point of the ePerl block in the final output.
           Usually contents is generated via pure "print" constructs which implicitly use "STDOUT" when no
           filehandle is given.

       3. Generated content on "STDERR" always leads to an error.
           Whenever content is generated on the "STDERR" filehandle, ePerl displays an error (including the
           STDERR content). Use this to exit on errors while passing errors from ePerl blocks to the calling
           environment.

       4. Last semicolon.
           Because of the following point 6 (see below) and the fact that most of the users don't have the
           internal ePerl block translations in mind, ePerl is smart about the last semicolon. Usually every
           ePerl block has to end with the semicolon of the last command.

              <: cmd; ...; cmd; :>

           But when the last semicolon is missing it is automatically added by ePerl, i.e.

              <: cmd; ...; cmd :>

           is also correct syntax.  But sometimes it is necessary to force ePerl not to add the semicolon. Then
           you can add a ``"_"'' (underscore) as the last non-whitespace character in the block to force ePerl
           to leave the final semicolon. Use this for constructs like the following

              <: if (...) { _:>
              foo
              <: } else { _:>
              bar
              <: } :>

           where you want to spread a Perl directive over more ePerl blocks.

       5. Shorthand for "print"-only blocks.
           Because most of the time ePerl is used just to interpolate variables, e.g.

              <: print $VARIABLE; :>

           it is useful to provide a shortcut for this kind of constructs.  So ePerl provides a shortcut via the
           character '='. When it immediately (no whitespaces allowed here) follows the begin delimiter of an
           ePerl block a "print" statement is implicitly generated, i.e. the above block is equivalent to

              <:=$VARIABLE:>

           Notice that the semicolon was also removed here, because it gets automatically added (see above).

       6. Special EndOfLine discard command for ePerl blocks.
           ePerl provides a special discard command named ``"//"'' which discards all data up-to and including
           the following newline character when directly followed an end block delimiter. Usually when you write

             foo
             <: $x = 1; :>
             quux

           the result is

             foo

             quux

           because ePerl always preserves code around ePerl blocks, even just newlines. But when you write

             foo
             <: $x = 1; :>//
             quux

           the result is

             foo
             quux

           because the ``"//"'' deleted all stuff to the end of the line, including the newline.

       7. Restrictions in parsing.
           Every program has its restrictions, ePerl too. Its handicap is that Perl is not only a rich language,
           it is a horrible one according to parsing its constructs. Perhaps you know the phrase ,,Only perl can
           parse Perl''.  Think about it. The implication of this is that ePerl never tries to parse the ePerl
           blocks itself. It entirely relies on the Perl interpreter library, because it is the only instance
           which can do this without errors.  But the problem is that ePerl at least has to recognize the begin
           and end positions of those ePerl blocks.

           There are two ways: It can either look for the end delimiter while parsing but at least recognize
           quoted strings (where the end delimiter gets treated as pure data). Or it can just move forward to
           the next end delimiter and say that it have not occur inside Perl constructs. In ePerl 2.0 the second
           one was used, while in ePerl 2.1 the first one was taken because a lot of users wanted it this way
           while using bad end delimiters like ``">"''. But actually the author has again revised its opinion
           and decided to finally use the second approach which is used since ePerl 2.2 now. Because while the
           first one allows more trivial delimiters (which itself is not a really good idea), it fails when
           constructs like ``"m|"[^"]+"|"'' etc.  are used inside ePerl blocks. And it is easier to escape end
           delimiters inside Perl constructs (for instance via backslashes in quoted strings) than rewrite
           complex Perl constructs to use even number of quotes.

           So, whenever your end delimiter also occurs inside Perl constructs you have to escape it in any way.

       8. HTML entity conversion.
           Because one of ePerl's usage is as a server-side scripting-language for HTML pages, there is a common
           problem in conjunction with HTML editors.  They cannot know ePerl blocks, so when you enter those
           blocks inside the editors they usually encode some characters with the corresponding HTML entities.
           The problem is that this encoding leads to invalid Perl code. ePerl provides the option -C for
           decoding these entities which is automatically turned on in CGI modes. See description below under
           option -C for more details.

   Runtime Modes
       ePerl can operate in three different runtime modes:

       Stand-alone Unix filter mode
           This is the default operation mode when used as a generation tool from the Unix shell or as a batch-
           processing tool from within other programs or scripts:

             $ eperl [options] - < inputfile > outputfile
             $ eperl [options] inputfile > outputfile
             $ eperl [options] -o outputfile - < inputfile
             $ eperl [options] -o outputfile inputfile

           As you can see, ePerl can be used in any combination of STDIO and external files. Additionally there
           are two interesting variants of using this mode.  First you can use ePerl in conjunction with the
           Unix Shebang magic technique to implicitly select it as the interpreter for your script similar to
           the way you are used to with the plain Perl interpreter:

             #!/path/to/eperl [options]
             foo
             <: print "bar"; :>
             quux

           Second, you can use ePerl in conjunction with the Bourne-Shell Here Document technique from within
           you shell scripts:

             #!/bin/sh
             ...
             eperl [options] - <<EOS
             foo
             <: print "quux"; :>
             quux
             EOS
             ...

           If you need to generate shell or other scripts with ePerl, i.e. you need a shebang line in the output
           of eperl, you have to add a shebang line containing e.g. "#!/usr/bin/eperl" first, because eperl will
           strip the first line from the input if it is a shebang line. Example:

             #!/usr/bin/eperl
             #!/bin/sh
             echo <: print "quux"; :>

           will result in the following output:

             #!/bin/sh
             echo quux

           Alternatively you can add a preprocessor comment in the first line, e.g. like this:

             #c This is a comment to preserve the shebang line in the following line
             #!/bin/sh
             echo <: print "quux"; :>

           And finally you can use ePerl directly from within Perl programs by the use of the Parse::ePerl(3)
           package (assuming that you have installed this also; see file INSTALL inside the ePerl distribution
           for more details):

             #!/path/to/perl
             ...
             use Parse::ePerl;
             ...
             $script = <<EOT;
             foo
             <: print "quux"; :>
             quux
             EOT
             ...
             $result = Parse::ePerl::Expand({
                 Script => $script,
                 Result => \$result,
             });
             ...
             print $result;
             ...

           See Parse::ePerl(3) for more details.

       CGI/1.1 compliant interface mode
           This is the runtime mode where ePerl uses the CGI/1.1 interface of a webserver when used as a Server-
           Side Scripting Language on the Web. ePerl enters this mode automatically when the CGI/1.1 environment
           variable "PATH_TRANSLATED" is set and its or the scripts filename does not begin with the NPH prefix
           ``nph-''.  In this runtime mode it prefixes the resulting data with HTTP/1.0 (default) or HTTP/1.1
           (if identified by the webserver) compliant response header lines.

           ePerl also recognizes HTTP header lines at the beginning of the scripts generated data, i.e. for
           instance you can generate your own HTTP headers like

              <? $url = "..";
                 print "Location: $url\n";
                 print "URI: $url\n\n"; !>
              <html>
              ...

           But notice that while you can output arbitrary headers, most webservers restrict the headers which
           are accepted via the CGI/1.1 interface. Usually you can provide only a few specific HTTP headers like
           "Location" or "Status".  If you need more control you have to use the NPH-CGI/1.1 interface mode.

           Additionally ePerl provides a useful feature in this mode: It can switch its UID/GID to the owner of
           the script if it runs as a Unix SetUID program (see below under Security and the option ``u+s'' of
           chmod(1)).

           There are two commonly known ways of using this CGI/1.1 interface mode on the Web. First, you can use
           it to explicitly transform plain HTML files into CGI/1.1 scripts via the Shebang technique (see
           above). For an Apache webserver just put the following line as the first line of the file:

             #!/path/to/eperl -mc

           Then rename the script from file.html to file.cgi and set its execution bit via

             $ mv file.html file.cgi
             $ chmod a+rx file.cgi

           Now make sure that Apache accepts file.cgi as a CGI program by enabling CGI support for the directory
           where file.cgi resides. For this add the line

             Options +ExecCGI

           to the .htaccess file in this directory. Finally make sure that Apache really recognizes the
           extension .cgi. Perhaps you additionally have to add the following line to your httpd.conf file:

             AddHandler cgi-script .cgi

           Now you can use file.cgi instead of file.html and make advantage of the achieved programming
           capability by bristling file.cgi with your Perl blocks (or the transformation into a CGI script would
           be useless).

           Alternatively (or even additionally) a webmaster can enable ePerl support in a more seamless way by
           configuring ePerl as a real implicit server-side scripting language. This is done by assigning a
           MIME-type to the various valid ePerl file extensions and forcing all files with this MIME-type to be
           internally processed via the ePerl interpreter. You can accomplish this for Apache by adding the
           following to your httpd.conf file

             AddType      application/x-httpd-eperl  .phtml .eperl .epl
             Action       application/x-httpd-eperl  /internal/cgi/eperl
             ScriptAlias  /internal/cgi              /path/to/apache/cgi-bin

           and creating a copy of the eperl program in your CGI-directory:

             $ cp -p /path/to/eperl /path/to/apache/cgi-bin/eperl

           Now all files with the extensions .phtml, .eperl and .epl are automatically processed by the ePerl
           interpreter. There is no need for a Shebang line or any locally enabled CGI mode.

           One final hint: When you want to test your scripts offline, just run them with forced CGI/1.1 mode
           from your shell. But make sure you prepare all environment variables your script depends on, e.g.
           "QUERY_STRING" or "PATH_INFO".

             $ export QUERY_STRING="key1=value1&key2=value2"
             $ eperl -mc file.phtml

       NPH-CGI/1.1 compliant interface mode
           This runtime mode is a special variant of the CGI/1.1 interface mode, because most webservers (e.g.
           Apache) provide it for special purposes.   It is known as Non-Parsed-Header (NPH) CGI/1.1 mode and is
           usually used by the webserver when the filename of the CGI program is prefixed with ``"nph-"''.  In
           this mode the webserver does no processing on the HTTP response headers and no buffering of the
           resulting data, i.e. the CGI program actually has to provide a complete HTTP response itself. The
           advantage is that the program can generate arbitrary HTTP headers or MIME-encoded multi-block
           messages.

           So, above we have renamed the file to file.cgi which restricted us a little bit. When we
           alternatively rename file.html to nph-file.cgi and force the NPH-CGI/1.1 interface mode via option
           -mn then this file becomes a NPH-CGI/1.1 compliant program under Apache and other webservers. Now our
           script can provide its own HTTP response (it need not, because when absent ePerl provides a default
           one for it).

             #!/path/to/bin/eperl -mn
             <? print "HTTP/1.0 200 Ok\n";
                print "X-MyHeader: Foo Bar Quux\n";
                print "Content-type: text/html\n\n";
             <html>
             ...

           As you expect this can be also used with the implicit Server-Side Scripting Language technique. Put

             AddType      application/x-httpd-eperl  .phtml .eperl .epl
             Action       application/x-httpd-eperl  /internal/cgi/nph-eperl
             ScriptAlias  /internal/cgi              /path/to/apache/cgi-bin

           into your httpd.conf and run the command

             $ cp -p /path/to/eperl /path/to/apache/cgi-bin/nph-eperl

           from your shell. This is the preferred way of using ePerl as a Server-Side Scripting Language,
           because it provides most flexibility.

   Security
       When you are installing ePerl as a CGI/1.1 or NPH-CGI/1.1 compliant program (see above for detailed
       description of these modes) via

         $ cp -p /path/to/eperl /path/to/apache/cgi-bin/eperl
         $ chown root /path/to/apache/cgi-bin/eperl
         $ chmod u+s  /path/to/apache/cgi-bin/eperl

       or

         $ cp -p /path/to/eperl /path/to/apache/cgi-bin/nph-eperl
         $ chown root /path/to/apache/cgi-bin/nph-eperl
         $ chmod u+s  /path/to/apache/cgi-bin/nph-eperl

       i.e. with SetUID bit enabled for the root user, ePerl can switch to the UID/GID of the scripts owner.
       Although this is a very useful feature for script programmers (because one no longer need to make
       auxiliary files world-readable and temporary files world-writable!), it can be to risky for you when you
       are paranoid about security of SetUID programs. If so just don't install ePerl with enabled SetUID bit!
       This is the reason why ePerl is per default only installed as a Stand-Alone Unix filter which never needs
       this feature.

       For those of us who decided that this feature is essential for them ePerl tries really hard to make it
       secure. The following steps have to be successfully passed before ePerl actually switches its UID/GID (in
       this order):

         1. The script has to match the following extensions:
            .html, .phtml, .ephtml, .epl, .pl, .cgi
         2. The UID of the calling process has to be a valid UID,
            i.e. it has to be found in the systems password file
         3. The UID of the calling process has to match the
            following users: root, nobody
         4. The UID of the script owner has to be a valid UID,
            i.e. it has to be found in the systems password file
         5. The GID of the script group has to be a valid GID,
            i.e. it has to be found in the systems group file
         6. The script has to stay below or in the owners homedir

       IF ONLY ONE OF THOSE STEPS FAIL, NO UID/GID SWITCHING TAKES PLACE!.  Additionally (if "DO_ON_FAILED_STEP"
       was defined as "STOP_AND_ERROR" in eperl_security.h - not per default defined this way!) ePerl can
       totally stop processing and display its error page.  This is for the really paranoid webmasters. Per
       default when any step failed the UID/GID switching is just disabled, but ePerl goes on with processing.
       Alternatively you can disable some steps at compile time. See eperl_security.h.

       Also remember that ePerl always eliminates the effective UID/GID, independent of the runtime mode and
       independent if ePerl has switched to the UID/GID of the owner. For security reasons, the effective
       UID/GID is always destroyed before the script is executed.

   ePerl Preprocessor
       ePerl provides an own preprocessor similar to CPP in style which is either enabled manually via option -P
       or automatically when ePerl runs in (NPH-)CGI mode.  The following directives are supported:

       "#include path"
           This directive is an include directive which can be used to include really any stuff, but was
           actually designed to be used to include other ePerl source files. The path can be either a relative
           or absolute path for the local filesystem or a fully qualified HTTP URL.

           In case of the absolute path the file is directly accessed on the filesystem, while the relative path
           is first searched in the current working directory and then in all directories specified via option
           -I. In the third case (HTTP URL) the file is retrieves via a HTTP/1.0 request on the network.  Here
           HTTP redirects (response codes 301 and 302) are supported, too.

           Notice: While ePerl strictly preserves the line numbers when translating the bristled ePerl format to
           plain Perl format, the ePerl preprocessor can't do this (because its a preprocessor which expands)
           for this directive.  So, whenever you use "#include", remember that line numbers in error messages
           are wrong.

           Also notice one important security aspect: Because you can include any stuff as it is provided with
           this directive, use it only for stuff which is under your direct control. Don't use this directive to
           include foreign data, at least not from external webservers. For instance say you have a ePerl page
           with "#include http://www.foreigner.com/nice-page.html" and at the next request of this page your
           filesystem is lost! Why? Because the foreigner recognizes that you include his page and are using
           ePerl and just put a simple ``"<?  system("rm -rf /"); !>"'' in his page. Think about it.  NEVER USE
           #INCLUDE FOR ANY DATA WHICH IS NOT UNDER YOUR OWN CONTROL.  Instead always use "#sinclude" for such
           situations.

       "#sinclude path"
           This is the secure variant of "#include" where after reading the data from path all ePerl begin and
           end delimiters are removed. So risky ePerl blocks lost their meaning and are converted to plain text.
           Always use this directive when you want to include data which is not under your own control.

       "#if expr", "#elsif expr", "#else", "#endif"
           These implement a CPP-style "#if-[#else-]#endif" construct, but with a Perl semantic. While the other
           directives are real preprocessor commands which are evaluated at the preprocessing step, this
           construct is actually just transformed into a low-level ePerl construct, so it is not actually
           evaluated at the preprocessing step. It is just a handy shortcut for the following (where BD is the
           currently used begin delimiter and ED the end delimiter):

             ``#if expr''    ->  ``BD if (expr) { _ ED//''
             ``#elsif expr'' ->  ``BD } elsif (expr) { _ ED//''
             ``#else''       ->  ``BD } else { _ ED//''
             ``#endif''      ->  ``BD } _ ED//''

           The advantage of this unusual aproach is that the if-condition really can be any valid Perl
           expression which provides maximum flexibility. The disadvantage is that you cannot use the if-
           construct to make real preprocessing decisions.  As you can see, the design goal was just to provide
           a shorthand for the more complicated Perl constructs.

       "#c"
           This is the comment directive which just discards all data up to and including the newline character.
           Use this one to comment out any stuff, even other preprocessor directives.

   Provided Functionality
       Up to know you've understand that ePerl provides a nice facility to embed Perl code into any ASCII data.
       But now the typical question is: Which Perl code can be put into these ePerl blocks and does ePerl
       provide any special functionality inside these ePerl blocks?

       The answers are: First, you can put really any Perl code into the ePerl blocks which are valid to the
       Perl interpreter ePerl was linked with. Second, ePerl does not provide any special functionality inside
       these ePerl blocks, because Perl is already sophisticated enough ;-)

       The implication of this is: Because you can use any valid Perl code you can make use of all available
       Perl 5 modules, even those ones which use shared objects (because ePerl is a Perl interpreter, including
       DynaLoader support). So, browse to the Comprehensive Perl Archive Network (CPAN) via
       http://www.perl.com/perl/CPAN and grab your favorite packages which can make your life easier (both from
       within plain Perl scripts and ePerl scripts) and just use the construct ``"use name;"'' in any ePerl
       block to use them from within ePerl.

       When using ePerl as a Server-Side-Scripting-Language I really recommend you to install at least the
       packages CGI.pm (currently vers.  2.36), HTML-Stream (1.40), libnet (1.0505) and libwww-perl (5.08).
       When you want to generate on-the-fly images as well, I recommend you to additionally install at least GD
       (1.14) and Image-Size (2.3). The ePerl interpreter in conjunction with these really sophisticated Perl 5
       modules will provide you with maximum flexibility and functionality. In other words: Make use of maximum
       Software Leverage in the hackers world of Perl as great as possible.

OPTIONS

       -d name=value
           Sets a Perl variable in the package "main" which can be referenced via $name or more explicitly via
           $main::name. The command

             eperl -d name=value ..

           is actually equivalent to having

             <? $name = value; !>

           at the beginning of inputfile. This option can occur more than once.

       -D name=value
           Sets a environment variable which can be referenced via $ENV{'variable'} inside the Perl blocks. The
           command

             eperl -D name=value ..

           is actually equivalent to

             export name=value; eperl ...

           but the advantage of this option is that it doesn't manipulate the callers environment. This option
           can occur more than once.

       -B begin_delimiter
           Sets the Perl block begin delimiter string. Use this in conjunction with "-E" to set different
           delimiters when using ePerl as an offline HTML creation-language while still using it as an online
           HTML scripting-language.  Default delimiters are "<?" and "!>" for CGI modes and "<:" and ":>" for
           stand-alone Unix filtering mode.

           There are a lot of possible variations you could choose: ""<:"" and "":>"" (the default ePerl stand-
           alone filtering mode delimiters), ""<?"" and ""!>"" (the default ePerl CGI interface mode
           delimiters), ""<script language='ePerl'>"" and ""</script>"" (standard HTML scripting language
           style), ""<script type="text/eperl">"" and ""</script>"" (forthcoming HTML3.2+ aka Cougar style),
           ""<eperl>"" and ""</eperl>"" (HTML-like style), ""<!--#eperl code='"" and ""' -->"" (NeoScript and
           SSI style) or even ""<?"" and "">"" (PHP/FI style; but this no longer recommended because it can lead
           to parsing problems. Should be used only for backward compatibility to old ePerl versions 1.x).

           The begin and end delimiters are searched case-insensitive.

       -E end_delimiter
           Sets the Perl block end delimiter string. See also option -B.

       -i  Forces the begin and end delimiters to be searched case-insensitive.  Use this when you are using
           delimiters like ``"<ePerl>"..."</ePerl>"'' or other more textual ones.

       -m mode
           This forces ePerl to act in a specific runtime mode.  See above for a detailed description of the
           three possible modes: Stand-alone filter (mode="f", i.e. option -mf), CGI/1.1 interface mode
           (mode="c", i.e. option -mc) or the NPH-CGI/1.1 interface mode (mode="n", i.e. option -mn).

       -o outputfile
           Forces the output to be written to outputfile instead of STDOUT. Use this option when using ePerl as
           a filter. The outputfile ``-'' sets STDOUT as the output handle explicitly. Notice that this file is
           relative to the source file directory when the runtime mode is forced to CGI or NPH-CGI.

       -k  Forces ePerl to keep the current working directory from where it was started.  Per default ePerl will
           change to the directory where the file to be executed stays. This option is useful if you use ePerl
           as an offline filter on a temporary file.

       -x  This sets debug mode where ePerl outputs the internally created Perl script to the console (/dev/tty)
           before executing it. Only for debugging problems with the inputfile conversion.

       -I directory
           Specify a directory which is both used for "#include" and "#sinclude" directives of the ePerl
           preprocessor and added to @INC under runtime.  This option can occur more than once.

       -P  Manually enables the special ePerl Preprocessor (see above). This option is enabled for all CGI modes
           automatically.

       -C  This enables the HTML entity conversion for ePerl blocks. This option is automatically forced in CGI
           modes.

           The solved problem here is the following: When you use ePerl as a Server-Side-Scripting-Language for
           HTML pages and you edit your ePerl source files via a HTML editor, the chance is high that your
           editor translates some entered characters to HTML entities, for instance ``"<"'' to ``"&lt;"''.  This
           leads to invalid Perl code inside ePerl blocks, because the HTML editor has no knowledge about ePerl
           blocks. Using this option the ePerl parser automatically converts all entities found inside ePerl
           blocks back to plain characters, so the Perl interpreter again receives valid code blocks.

       -L  This enables the line continuation character ``"\"'' (backslash) outside ePerl blocks. With this
           option you can spread oneline-data over more lines.  But use with care: This option changes your data
           (outside ePerl blocks).  Usually ePerl really pass through all surrounding data as raw data. With
           this option the newlines become new semantics.

       -T  This enabled Perl's Tainting mode where the Perl interpreter takes special precautions called taint
           checks to prevent both obvious and subtle traps.  See perlsec(1) for more details.

       -w  This enables Warnings where the Perl interpreter produces some lovely diagnostics. See perldiag(1)
           for more details.

       -c  This runs a pure syntax check which is similar to ``"perl -c"''.

       -r  This prints the internal ePerl README file to the console.

       -l  This prints the internal ePerl LICENSE file to the console.

       -v  This prints ePerl version information to the console.

       -V  Same as option -v but additionally shows the Perl compilation parameters.

ENVIRONMENT

   Used Variables
       "PATH_TRANSLATED"
           This CGI/1.1 variable is used to determine the source file when ePerl operates as a NPH-CGI/1.1
           program under the environment of a webserver.

   Provided Variables
       "SCRIPT_SRC_PATH"
           The absolute pathname of the script. Use this when you want to directly access the script from within
           itself, for instance to do "stat()" and other calls.

       "SCRIPT_SRC_PATH_DIR"
           The directory part of "SCRIPT_SRC_PATH". Use this one when you want to directly access other files
           residing in the same directory as the script, for instance to read config files, etc.

       "SCRIPT_SRC_PATH_FILE"
           The filename part of "SCRIPT_SRC_PATH". Use this one when you need the name of the script, for
           instance for relative self-references through URLs.

       "SCRIPT_SRC_URL"
           The fully-qualified URL of the script. Use this when you need a URL for self-reference.

       "SCRIPT_SRC_URL_DIR"
           The directory part of "SCRIPT_SRC_URL". Use this one when you want to directly access other files
           residing in the same directory as the script via the Web, for instance to reference images, etc.

       "SCRIPT_SRC_URL_FILE"
           The filename part of "SCRIPT_SRC_URL". Use this one when you need the name of the script, for
           instance for relative self-references through URLs.  Actually the same as "SCRIPT_SRC_PATH_FILE", but
           provided for consistency.

       "SCRIPT_SRC_SIZE"
           The filesize of the script, in bytes.

       "SCRIPT_SRC_MODIFIED"
           The last modification time of the script, in seconds since 0 hours, 0 minutes, 0 seconds, January 1,
           1970, Coordinated Universal Time.

       "SCRIPT_SRC_MODIFIED_CTIME"
           The last modification time of the script, in ctime(3) format (``WDAY MMM DD HH:MM:SS YYYY\n'').

       "SCRIPT_SRC_MODIFIED_ISOTIME"
           The last modification time of the script, in ISO format (``DD-MM-YYYY HH:MM'').

       "SCRIPT_SRC_OWNER"
           The username of the script owner.

       "VERSION_INTERPRETER"
           The ePerl identification string.

       "VERSION_LANGUAGE"
           The identification string of the used Perl interpreter library.

   Provided Built-In Images
       The following built-in images can be accessed via URL "/url/to/nph-eperl/"NAME".gif":

       "logo.gif"
           The standard ePerl logo. Please do not include this one on your website.

       "powered.gif"
           The ``powered by ePerl 2.2'' logo. Feel free to use this on your website.

AUTHOR

         Ralf S. Engelschall
         rse@engelschall.com
         www.engelschall.com

SEEALSO

       Parse::ePerl(3), Apache::ePerl(3).

       Web-References:

         Perl:   perl(1),  http://www.perl.com/
         ePerl:  eperl(1), http://www.ossp.org/pkg/tool/eperl/
         Apache: httpd(8), http://www.apache.org/